Microplastic biofilms as potential hotspots for plastic biodegradation and nitrogen cycling: a metagenomic perspective.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Samantha G Fortin, Kelley Uhlig, Robert C Hale, Bongkeun Song
{"title":"Microplastic biofilms as potential hotspots for plastic biodegradation and nitrogen cycling: a metagenomic perspective.","authors":"Samantha G Fortin, Kelley Uhlig, Robert C Hale, Bongkeun Song","doi":"10.1093/femsec/fiaf035","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics are an emerging contaminant worldwide, with the potential to impact organisms and facilitate the sorption and release of chemicals. Additionally, they create a novel habitat for microbial communities, forming biofilms known as the plastisphere. While the plastisphere has been studied in select aquatic environments, those in estuarine ecosystems merit additional attention due to their proximity to plastic debris sources. Additionally, the role plastisphere communities play in nutrient cycling has rarely been examined. This study used metagenomic analysis to investigate the taxonomic composition and functional genes of developing plastisphere communities living on petroleum-based (polyethylene and polyvinyl chloride) and biopolymer-based (polylactic acid) substrates. Isolated metagenome-assembled genomes (MAGs) showed plastisphere communities have the genes necessary to perform nitrification and denitrification and degrade petroleum and biopolymer-based plastics. The functions of these plastispheres have implications for estuarine nitrogen cycling and provide a possible explanation for the plastisphere microbes' competitiveness in biofilm environments. Overall, microplastics in the estuarine system provide a novel habitat for microbial communities and associated nitrogen cycling, facilitating the growth of microbes with plastic-degrading capabilities.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11995698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf035","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics are an emerging contaminant worldwide, with the potential to impact organisms and facilitate the sorption and release of chemicals. Additionally, they create a novel habitat for microbial communities, forming biofilms known as the plastisphere. While the plastisphere has been studied in select aquatic environments, those in estuarine ecosystems merit additional attention due to their proximity to plastic debris sources. Additionally, the role plastisphere communities play in nutrient cycling has rarely been examined. This study used metagenomic analysis to investigate the taxonomic composition and functional genes of developing plastisphere communities living on petroleum-based (polyethylene and polyvinyl chloride) and biopolymer-based (polylactic acid) substrates. Isolated metagenome-assembled genomes (MAGs) showed plastisphere communities have the genes necessary to perform nitrification and denitrification and degrade petroleum and biopolymer-based plastics. The functions of these plastispheres have implications for estuarine nitrogen cycling and provide a possible explanation for the plastisphere microbes' competitiveness in biofilm environments. Overall, microplastics in the estuarine system provide a novel habitat for microbial communities and associated nitrogen cycling, facilitating the growth of microbes with plastic-degrading capabilities.

微塑料生物膜作为塑料生物降解和氮循环的潜在热点:一个宏基因组的观点。
微塑料是世界范围内的一种新兴污染物,有可能影响生物并促进化学物质的吸收和释放。此外,它们为微生物群落创造了一个新的栖息地,形成被称为塑性球的生物膜。虽然塑料圈已经在选定的水生环境中进行了研究,但河口生态系统中的塑料圈由于靠近塑料碎片源而值得额外关注。此外,塑料圈群落在养分循环中的作用很少被研究。本研究采用宏基因组分析方法研究了以石油基(聚乙烯和聚氯乙烯)和生物聚合物(聚乳酸)为底物的正在发育的塑料球群落的分类组成和功能基因。分离的宏基因组组装基因组(MAGs)表明,塑料球群落具有进行硝化和反硝化以及降解石油和生物聚合物基塑料所需的基因。这些塑料球的功能与河口氮循环有关,并为塑料球微生物在生物膜环境中的竞争力提供了可能的解释。总体而言,河口系统中的微塑料为微生物群落和相关的氮循环提供了新的栖息地,促进了具有塑料降解能力的微生物的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信