Shuyi Feng, Padmini Ramachandran, Ryan A Blaustein, Abani K Pradhan
{"title":"Bioinformatics combined with machine learning unravels differences among environmental, seafood, and clinical isolates of <i>Vibrio parahaemolyticus</i>.","authors":"Shuyi Feng, Padmini Ramachandran, Ryan A Blaustein, Abani K Pradhan","doi":"10.3389/fmicb.2025.1549260","DOIUrl":null,"url":null,"abstract":"<p><p><i>Vibrio parahaemolyticus</i> is the leading cause of illnesses and outbreaks linked to seafood consumption across the globe. Understanding how this pathogen may be adapted to persist along the farm-to-table supply chain has applications for addressing food safety. This study utilized machine learning to develop robust models classifying genomic diversity of <i>V. parahaemolyticus</i> that was isolated from environmental (<i>n</i> = 176), seafood (<i>n</i> = 975), and clinical (<i>n</i> = 865) sample origins. We constructed a pangenome of the respective genome assemblies and employed random forest algorithm to develop predictive models to identify gene clusters encoding metabolism, virulence, and antibiotic resistance that were associated with isolate source type. Comparison of genomes of all seafood-clinical isolates showed high balanced accuracy (≥0.80) and Area Under the Receiver Operating Characteristics curve (≥0.87) for all of these functional features. Major virulence factors including <i>tdh</i>, <i>trh</i>, type III secretion system-related genes, and four alpha-hemolysin genes (<i>hlyA</i>, <i>hlyB</i>, <i>hlyC</i>, and <i>hlyD</i>) were identified as important differentiating factors in our seafood-clinical virulence model, underscoring the need for further investigation. Significant patterns for AMR genes differing among seafood and clinical samples were revealed from our model and genes conferring to tetracycline, elfamycin, and multidrug (phenicol antibiotic, diaminopyrimidine antibiotic, and fluoroquinolone antibiotic) resistance were identified as the top three key variables. These findings provide crucial insights into the development of effective surveillance and management strategies to address the public health threats associated with <i>V. parahaemolyticus</i>.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1549260"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1549260","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vibrio parahaemolyticus is the leading cause of illnesses and outbreaks linked to seafood consumption across the globe. Understanding how this pathogen may be adapted to persist along the farm-to-table supply chain has applications for addressing food safety. This study utilized machine learning to develop robust models classifying genomic diversity of V. parahaemolyticus that was isolated from environmental (n = 176), seafood (n = 975), and clinical (n = 865) sample origins. We constructed a pangenome of the respective genome assemblies and employed random forest algorithm to develop predictive models to identify gene clusters encoding metabolism, virulence, and antibiotic resistance that were associated with isolate source type. Comparison of genomes of all seafood-clinical isolates showed high balanced accuracy (≥0.80) and Area Under the Receiver Operating Characteristics curve (≥0.87) for all of these functional features. Major virulence factors including tdh, trh, type III secretion system-related genes, and four alpha-hemolysin genes (hlyA, hlyB, hlyC, and hlyD) were identified as important differentiating factors in our seafood-clinical virulence model, underscoring the need for further investigation. Significant patterns for AMR genes differing among seafood and clinical samples were revealed from our model and genes conferring to tetracycline, elfamycin, and multidrug (phenicol antibiotic, diaminopyrimidine antibiotic, and fluoroquinolone antibiotic) resistance were identified as the top three key variables. These findings provide crucial insights into the development of effective surveillance and management strategies to address the public health threats associated with V. parahaemolyticus.
期刊介绍:
Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.