Mingxing Fan, Ran Lu, Jiayuan Wu, Jie Huang, Yanming Fang
{"title":"Osteoporotic vertebral fractures and subsequent fractures: risk factors from a retrospective observational study of patients with osteoporosis.","authors":"Mingxing Fan, Ran Lu, Jiayuan Wu, Jie Huang, Yanming Fang","doi":"10.3389/fmolb.2025.1558052","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Osteoporosis is a progressive, systemic, skeletal disorder characterized by increased bone fragility and susceptibility to fracture. Prior fractures are a strong predictor of subsequent fractures, but it is essential to identify further clinical and demographic characteristics of patients with osteoporosis that are associated with subsequent fracture risk.</p><p><strong>Methods: </strong>In this retrospective observational cohort study, male and female patients over the age of 55 years with osteoporosis who experienced vertebral fractures between 2019 and 2021 were included. All patients' basic clinical data, serum biochemical and bone turnover markers, bone mineral density, and other indicators were recorded uniformly. The incidence of subsequent fractures during the two-year follow-up period was analyzed. Independent risk factors for subsequent fractures were identified by binary logistic regression analysis.</p><p><strong>Results: </strong>A total of 1,096 patients were included. Of these, 311 (28.4%) patients suffered a subsequent fracture during the two-year follow-up period. The incidences of subsequent fracture sites were 18.4% vertebral, 14.2% forearm/wrist/hand, and 9.9% hip/femur. Compared with the non-subsequent fracture group (non-SFG), binary logistic regression analysis showed that body mass index (BMI) (OR [95% CI] 0.825 [0.720-0.945]; P = 0.006), femoral neck bone mineral density (BMD) T-score (OR [95% CI] 0.067 [0.012-0.385]; P = 0.002), and C-terminal telopeptide of type 1 collagen (CTX) levels (OR [95% CI] 6.089 [1.735-21.375]; P = 0.005) were independent risk factors associated with subsequent fractures.</p><p><strong>Conclusion: </strong>Patients with osteoporosis and previous vertebral fractures are at a higher risk of further fractures at a two-year follow-up period. BMI, femoral neck BMD T-score, and CTX levels were independent risk factors for refracture. Integrating BMI, femoral neck BMD, and CTX levels into an individualized care plan for patients with osteoporotic vertebral fractures may help prevent subsequent fractures in high-risk populations.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1558052"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961946/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1558052","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Osteoporosis is a progressive, systemic, skeletal disorder characterized by increased bone fragility and susceptibility to fracture. Prior fractures are a strong predictor of subsequent fractures, but it is essential to identify further clinical and demographic characteristics of patients with osteoporosis that are associated with subsequent fracture risk.
Methods: In this retrospective observational cohort study, male and female patients over the age of 55 years with osteoporosis who experienced vertebral fractures between 2019 and 2021 were included. All patients' basic clinical data, serum biochemical and bone turnover markers, bone mineral density, and other indicators were recorded uniformly. The incidence of subsequent fractures during the two-year follow-up period was analyzed. Independent risk factors for subsequent fractures were identified by binary logistic regression analysis.
Results: A total of 1,096 patients were included. Of these, 311 (28.4%) patients suffered a subsequent fracture during the two-year follow-up period. The incidences of subsequent fracture sites were 18.4% vertebral, 14.2% forearm/wrist/hand, and 9.9% hip/femur. Compared with the non-subsequent fracture group (non-SFG), binary logistic regression analysis showed that body mass index (BMI) (OR [95% CI] 0.825 [0.720-0.945]; P = 0.006), femoral neck bone mineral density (BMD) T-score (OR [95% CI] 0.067 [0.012-0.385]; P = 0.002), and C-terminal telopeptide of type 1 collagen (CTX) levels (OR [95% CI] 6.089 [1.735-21.375]; P = 0.005) were independent risk factors associated with subsequent fractures.
Conclusion: Patients with osteoporosis and previous vertebral fractures are at a higher risk of further fractures at a two-year follow-up period. BMI, femoral neck BMD T-score, and CTX levels were independent risk factors for refracture. Integrating BMI, femoral neck BMD, and CTX levels into an individualized care plan for patients with osteoporotic vertebral fractures may help prevent subsequent fractures in high-risk populations.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.