{"title":"Advanced surface modification techniques for titanium implants: a review of osteogenic and antibacterial strategies.","authors":"Handong Zhang, Zidong Wu, Zemin Wang, Xinfeng Yan, Xudong Duan, Huaqiang Sun","doi":"10.3389/fbioe.2025.1549439","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium (Ti) implants are widely used in orthopedic and dental applications due to their excellent mechanical strength, corrosion resistance, and biocompatibility. However, their limited osteointegration and susceptibility to bacterial infections remain major clinical challenges. Recent advancements in surface modification techniques have significantly improved the osteogenic and antibacterial properties of Ti implants. This review summarizes key strategies, including ion doping, hydroxyapatite (HAp) coatings, nanostructured surfaces, and graphene-based modifications. Zinc (Zn)-doped coatings increase osteoblast proliferation by 25%, enhance cell adhesion by 40%, and inhibit <i>Staphylococcus aureus</i> by 24%. Magnesium (Mg)-doped Ti surfaces enhance osteoblast differentiation, with 38% increased alkaline phosphatase (ALP) activity and a 4.5-fold increase in cell proliferation. Copper (Cu)-doped coatings achieve 99.45% antibacterial efficacy against <i>S. aureus</i> and 98.65% against <i>Escherichia coli</i> (<i>E. coli</i>). Zn-substituted HAp promotes mineralized nodule formation by 4.5-fold and exhibits 16.25% bacterial inhibition against <i>E. coli</i>. Graphene-based coatings stimulate bone marrow stem cells (BMSCs) and provide light-responsive surface potentials for enhanced osteogenesis. Despite these advancements, challenges remain in optimizing ion release kinetics and long-term stability. Future research should focus on multi-functional coatings that integrate osteogenic, antibacterial, and immunomodulatory properties to enhance clinical performance and patient outcomes.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1549439"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1549439","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium (Ti) implants are widely used in orthopedic and dental applications due to their excellent mechanical strength, corrosion resistance, and biocompatibility. However, their limited osteointegration and susceptibility to bacterial infections remain major clinical challenges. Recent advancements in surface modification techniques have significantly improved the osteogenic and antibacterial properties of Ti implants. This review summarizes key strategies, including ion doping, hydroxyapatite (HAp) coatings, nanostructured surfaces, and graphene-based modifications. Zinc (Zn)-doped coatings increase osteoblast proliferation by 25%, enhance cell adhesion by 40%, and inhibit Staphylococcus aureus by 24%. Magnesium (Mg)-doped Ti surfaces enhance osteoblast differentiation, with 38% increased alkaline phosphatase (ALP) activity and a 4.5-fold increase in cell proliferation. Copper (Cu)-doped coatings achieve 99.45% antibacterial efficacy against S. aureus and 98.65% against Escherichia coli (E. coli). Zn-substituted HAp promotes mineralized nodule formation by 4.5-fold and exhibits 16.25% bacterial inhibition against E. coli. Graphene-based coatings stimulate bone marrow stem cells (BMSCs) and provide light-responsive surface potentials for enhanced osteogenesis. Despite these advancements, challenges remain in optimizing ion release kinetics and long-term stability. Future research should focus on multi-functional coatings that integrate osteogenic, antibacterial, and immunomodulatory properties to enhance clinical performance and patient outcomes.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.