CircATP5C1 promotes triple-negative breast cancer progression by binding IGF2BP2 to modulate CSF-1 secretion.

IF 4.4 4区 医学 Q2 ONCOLOGY
Cancer Biology & Therapy Pub Date : 2025-12-01 Epub Date: 2025-04-02 DOI:10.1080/15384047.2025.2479926
Hongbo Liu, Haoqi Wang, Wei Gao, Yang Yuan, Tiantian Tang, Meixiang Sang, Fei Liu, Cuizhi Geng
{"title":"CircATP5C1 promotes triple-negative breast cancer progression by binding IGF2BP2 to modulate CSF-1 secretion.","authors":"Hongbo Liu, Haoqi Wang, Wei Gao, Yang Yuan, Tiantian Tang, Meixiang Sang, Fei Liu, Cuizhi Geng","doi":"10.1080/15384047.2025.2479926","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is a common malignant disease among females and severely threatens the health of women worldwide. Nowadays, circular RNAs (circRNAs) aroused our interest for their functions in human cancers, including TNBC. However, the mechanism of most circRNAs in the progression of TNBC remains unclear. We found a novel circRNA named circATP5C1, whose function in TNBC remains uncovered. Tissue microarray was used to analyze the association between the expression of circATP5C1 and the prognoses of TNBC patients. Gain-and loss-of-function experiments were performed to validate the biological functions of circATP5C1 in different TNBC cell lines. RNA-seq analyses were conducted to find out the target genes regulated by circATP5C1. RNA pull-down assay and mass spectrometry were used to select the proteins associated with circATP5C1. RNA FISH-immunofluorescence and RNA immunoprecipitation (RIP) were complemented to validate the interaction between circATP5C1 and its binding protein. CircATP5C1 was identified to have predictive function in prognosis of TNBC patients. CircATP5C1 advanced the progression of TNBC cells. Mechanistically, Colony stimulating factor 1 (CSF-1) is a vital downstream gene regulated by circATP5C1. The alteration of CSF-1 expression level was validated due to the interaction between circATP5C1 and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2). Rescue experiments demonstrated that circATP5C1 accelerates the progression of TNBC partly via binding with IGF2BP2 to increase the secretion of CSF-1. This study uncovers a novel mechanism of circATP5C1/IGF2BP2/CSF-1 pathway in regulating progression of TNBC.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2479926"},"PeriodicalIF":4.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2025.2479926","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC) is a common malignant disease among females and severely threatens the health of women worldwide. Nowadays, circular RNAs (circRNAs) aroused our interest for their functions in human cancers, including TNBC. However, the mechanism of most circRNAs in the progression of TNBC remains unclear. We found a novel circRNA named circATP5C1, whose function in TNBC remains uncovered. Tissue microarray was used to analyze the association between the expression of circATP5C1 and the prognoses of TNBC patients. Gain-and loss-of-function experiments were performed to validate the biological functions of circATP5C1 in different TNBC cell lines. RNA-seq analyses were conducted to find out the target genes regulated by circATP5C1. RNA pull-down assay and mass spectrometry were used to select the proteins associated with circATP5C1. RNA FISH-immunofluorescence and RNA immunoprecipitation (RIP) were complemented to validate the interaction between circATP5C1 and its binding protein. CircATP5C1 was identified to have predictive function in prognosis of TNBC patients. CircATP5C1 advanced the progression of TNBC cells. Mechanistically, Colony stimulating factor 1 (CSF-1) is a vital downstream gene regulated by circATP5C1. The alteration of CSF-1 expression level was validated due to the interaction between circATP5C1 and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2). Rescue experiments demonstrated that circATP5C1 accelerates the progression of TNBC partly via binding with IGF2BP2 to increase the secretion of CSF-1. This study uncovers a novel mechanism of circATP5C1/IGF2BP2/CSF-1 pathway in regulating progression of TNBC.

CircATP5C1通过结合IGF2BP2调节CSF-1分泌促进三阴性乳腺癌进展。
三阴性乳腺癌(TNBC)是一种常见的女性恶性疾病,严重威胁着全世界妇女的健康。如今,环状rna (circRNAs)在包括TNBC在内的人类癌症中的功能引起了我们的兴趣。然而,大多数环状rna在TNBC进展中的机制尚不清楚。我们发现了一种名为circATP5C1的新型环状rna,其在TNBC中的功能尚不清楚。使用组织芯片分析circATP5C1表达与TNBC患者预后之间的关系。为了验证circATP5C1在不同TNBC细胞系中的生物学功能,我们进行了功能获得和功能丧失实验。通过RNA-seq分析找出circATP5C1调控的靶基因。采用RNA下拉法和质谱法筛选与circATP5C1相关的蛋白。利用RNA fish免疫荧光和RNA免疫沉淀(RIP)验证circATP5C1与其结合蛋白之间的相互作用。CircATP5C1在TNBC患者的预后中具有预测功能。CircATP5C1促进TNBC细胞的进展。从机制上讲,集落刺激因子1 (CSF-1)是由circATP5C1调控的重要下游基因。由于circATP5C1与胰岛素样生长因子2 mRNA结合蛋白2 (IGF2BP2)相互作用,证实了CSF-1表达水平的改变。救援实验表明,circATP5C1部分通过与IGF2BP2结合增加CSF-1的分泌来加速TNBC的进展。本研究揭示了circATP5C1/IGF2BP2/CSF-1通路调控TNBC进展的新机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Biology & Therapy
Cancer Biology & Therapy 医学-肿瘤学
CiteScore
7.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信