Early Colon Cancer Prediction from Histopathological Images Using Enhanced Deep Learning with Confidence Scoring.

IF 1.8 4区 医学 Q3 ONCOLOGY
V P Gladis Pushparathi, J Shajeena, T Kamalam, M Revathi
{"title":"Early Colon Cancer Prediction from Histopathological Images Using Enhanced Deep Learning with Confidence Scoring.","authors":"V P Gladis Pushparathi, J Shajeena, T Kamalam, M Revathi","doi":"10.1080/07357907.2025.2483302","DOIUrl":null,"url":null,"abstract":"<p><p>Colon Cancer (CC) arises from abnormal cell growth in the colon, which severely impacts a person's health and quality of life. Detecting CC through histopathological images for early diagnosis offers substantial benefits in medical diagnostics. This study proposes NalexNet, a hybrid deep-learning classifier, to enhance classification accuracy and computational efficiency. The research methodology involves Vahadane stain normalization for preprocessing and Watershed segmentation for accurate tissue separation. The Teamwork Optimization Algorithm (TOA) is employed for optimal feature selection to reduce redundancy and improve classification performance. Furthermore, the NalexNet model is structured with convolutional layers and normal and reduction cells, ensuring efficient feature representation and high classification accuracy. Experimental results demonstrate that the proposed model achieves a precision of 99.9% and an accuracy of 99.5%, significantly outperforming existing models. This study contributes to the development of an automated and computationally efficient CC classification system, which has the potential for real-world clinical implementation, aiding pathologists in early and accurate diagnosis.</p>","PeriodicalId":9463,"journal":{"name":"Cancer Investigation","volume":" ","pages":"1-19"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07357907.2025.2483302","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Colon Cancer (CC) arises from abnormal cell growth in the colon, which severely impacts a person's health and quality of life. Detecting CC through histopathological images for early diagnosis offers substantial benefits in medical diagnostics. This study proposes NalexNet, a hybrid deep-learning classifier, to enhance classification accuracy and computational efficiency. The research methodology involves Vahadane stain normalization for preprocessing and Watershed segmentation for accurate tissue separation. The Teamwork Optimization Algorithm (TOA) is employed for optimal feature selection to reduce redundancy and improve classification performance. Furthermore, the NalexNet model is structured with convolutional layers and normal and reduction cells, ensuring efficient feature representation and high classification accuracy. Experimental results demonstrate that the proposed model achieves a precision of 99.9% and an accuracy of 99.5%, significantly outperforming existing models. This study contributes to the development of an automated and computationally efficient CC classification system, which has the potential for real-world clinical implementation, aiding pathologists in early and accurate diagnosis.

使用增强深度学习和信心评分从组织病理学图像中预测早期结肠癌。
结肠癌(CC)由结肠细胞异常生长引起,严重影响人的健康和生活质量。通过组织病理学图像检测CC的早期诊断为医学诊断提供了实质性的好处。为了提高分类精度和计算效率,本研究提出了一种混合深度学习分类器NalexNet。研究方法包括用于预处理的瓦哈丹染色归一化和用于准确组织分离的分水岭分割。采用团队优化算法(TOA)对特征进行优化选择,减少冗余,提高分类性能。此外,NalexNet模型由卷积层和正常单元和约简单元组成,确保了高效的特征表示和高分类精度。实验结果表明,该模型的精度为99.9%,准确度为99.5%,显著优于现有模型。本研究有助于开发一种自动化和计算效率高的CC分类系统,该系统具有在现实世界的临床实施的潜力,帮助病理学家进行早期准确的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Investigation
Cancer Investigation 医学-肿瘤学
CiteScore
3.80
自引率
4.20%
发文量
71
审稿时长
8.5 months
期刊介绍: Cancer Investigation is one of the most highly regarded and recognized journals in the field of basic and clinical oncology. It is designed to give physicians a comprehensive resource on the current state of progress in the cancer field as well as a broad background of reliable information necessary for effective decision making. In addition to presenting original papers of fundamental significance, it also publishes reviews, essays, specialized presentations of controversies, considerations of new technologies and their applications to specific laboratory problems, discussions of public issues, miniseries on major topics, new and experimental drugs and therapies, and an innovative letters to the editor section. One of the unique features of the journal is its departmentalized editorial sections reporting on more than 30 subject categories covering the broad spectrum of specialized areas that together comprise the field of oncology. Edited by leading physicians and research scientists, these sections make Cancer Investigation the prime resource for clinicians seeking to make sense of the sometimes-overwhelming amount of information available throughout the field. In addition to its peer-reviewed clinical research, the journal also features translational studies that bridge the gap between the laboratory and the clinic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信