Wen-Juan Li, Yan-Chao Chen, Yi-An Lin, Yi-Qin Zou, Guo-Sheng Hu, Jing-Jing Yang, Xin-Yu Nie, Mei-Yan Li, Yi-Ran Wang, Yao-Hui He, Yan Zhao, Yu-Hua Tan, Xianming Deng, Wei-Ling He, Yan Cheng, Fang-Meng Fu, Wen Liu
{"title":"Hypoxia-induced PRMT1 methylates HIF2β to promote breast tumorigenesis via enhancing glycolytic gene transcription.","authors":"Wen-Juan Li, Yan-Chao Chen, Yi-An Lin, Yi-Qin Zou, Guo-Sheng Hu, Jing-Jing Yang, Xin-Yu Nie, Mei-Yan Li, Yi-Ran Wang, Yao-Hui He, Yan Zhao, Yu-Hua Tan, Xianming Deng, Wei-Ling He, Yan Cheng, Fang-Meng Fu, Wen Liu","doi":"10.1016/j.celrep.2025.115487","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia-induced metabolic reprogramming is closely linked to breast cancer progression. Through transcriptomic analysis, we identified PRMT1 as a direct target of hypoxia-inducible factor 1α (HIF1α) under hypoxic conditions in breast cancer cells. In turn, PRMT1 enhances the expression of HIF1α-driven glycolytic genes. Mechanistically, PRMT1 methylates HIF2β at arginine 42, facilitating the formation, chromatin binding, and the transcriptional activity of the HIF1α/HIF2β heterodimer. Genetic and pharmacological inhibition of PRMT1 suppresses HIF2β methylation, HIF1α/HIF2β heterodimer formation, chromatin binding, glycolytic gene expression, lactate production, and the malignant behaviors of breast cancer cells. Moreover, combination treatment with iPRMT1, a PRMT1 inhibitor, and menadione, an HIF1α/P300 interaction inhibitor, demonstrates synergistic effects in suppressing breast tumor growth. Clinically, PRMT1 and PRMT1-mediated HIF2β methylation were significantly elevated in breast tumors compared with adjacent normal tissues. In conclusion, our findings reveal the critical role of PRMT1-mediated arginine methylation in glycolytic gene expression, metabolic reprogramming, and breast tumor growth.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115487"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115487","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypoxia-induced metabolic reprogramming is closely linked to breast cancer progression. Through transcriptomic analysis, we identified PRMT1 as a direct target of hypoxia-inducible factor 1α (HIF1α) under hypoxic conditions in breast cancer cells. In turn, PRMT1 enhances the expression of HIF1α-driven glycolytic genes. Mechanistically, PRMT1 methylates HIF2β at arginine 42, facilitating the formation, chromatin binding, and the transcriptional activity of the HIF1α/HIF2β heterodimer. Genetic and pharmacological inhibition of PRMT1 suppresses HIF2β methylation, HIF1α/HIF2β heterodimer formation, chromatin binding, glycolytic gene expression, lactate production, and the malignant behaviors of breast cancer cells. Moreover, combination treatment with iPRMT1, a PRMT1 inhibitor, and menadione, an HIF1α/P300 interaction inhibitor, demonstrates synergistic effects in suppressing breast tumor growth. Clinically, PRMT1 and PRMT1-mediated HIF2β methylation were significantly elevated in breast tumors compared with adjacent normal tissues. In conclusion, our findings reveal the critical role of PRMT1-mediated arginine methylation in glycolytic gene expression, metabolic reprogramming, and breast tumor growth.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.