Mst Julia Sultana, Takuto Kurakawa, Miyu Nishikawa, Shinichi Ikushiro
{"title":"Regio-specific synthesis of flavonoid glucuronides using plant UDP-glucuronosyltransferase expressed in yeast.","authors":"Mst Julia Sultana, Takuto Kurakawa, Miyu Nishikawa, Shinichi Ikushiro","doi":"10.1093/bbb/zbaf049","DOIUrl":null,"url":null,"abstract":"<p><p>Glucuronidation is a well-established biotransformation process that modifies the physiological and pharmacological properties of small molecules, making it a valuable tool for enhancing the chemical diversity of natural compounds in drug development. However, the chemical synthesis of glucuronides is often complex, time-consuming, and environmentally unsustainable. To overcome these challenges, plant uridine diphosphate (UDP)-glucuronosyltransferase (UGT)-mediated glucuronidation, using transformed yeast, offers a selective and efficient alternative for producing flavonoid glucuronides. This study aimed to conjugate quercetin with glucuronic acid by stably co-transforming Saccharomyces cerevisiae with plant UGTs (UGT78A11 and UGT88D7) and rat UDP-glucose-6-dehydrogenease. The UGT78A11 and UGT88D7 selectively conjugated quercetin at specific positions, producing quercetin-3-O-glucuronide and quercetin-7-O-glucuronide, respectively. The whole-cell biotransformation platform effectively leverages the regio-selectivity of UGT78A11 and UGT88D7 to convert polyhydroxy secondary metabolites into monoglucuronides with promising yields, thereby enhancing the availability and physiological potential of these glucuronides.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbaf049","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucuronidation is a well-established biotransformation process that modifies the physiological and pharmacological properties of small molecules, making it a valuable tool for enhancing the chemical diversity of natural compounds in drug development. However, the chemical synthesis of glucuronides is often complex, time-consuming, and environmentally unsustainable. To overcome these challenges, plant uridine diphosphate (UDP)-glucuronosyltransferase (UGT)-mediated glucuronidation, using transformed yeast, offers a selective and efficient alternative for producing flavonoid glucuronides. This study aimed to conjugate quercetin with glucuronic acid by stably co-transforming Saccharomyces cerevisiae with plant UGTs (UGT78A11 and UGT88D7) and rat UDP-glucose-6-dehydrogenease. The UGT78A11 and UGT88D7 selectively conjugated quercetin at specific positions, producing quercetin-3-O-glucuronide and quercetin-7-O-glucuronide, respectively. The whole-cell biotransformation platform effectively leverages the regio-selectivity of UGT78A11 and UGT88D7 to convert polyhydroxy secondary metabolites into monoglucuronides with promising yields, thereby enhancing the availability and physiological potential of these glucuronides.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).