Lara H Moleiro, Diego Herráez-Aguilar, Guillermo Solís-Fernández, Niccolo Caselli, Carina Dargel, Verónica I Dodero, José M Bautista, Thomas Hellweg, Francisco Monroy
{"title":"Mechanical adaptivity of red blood cell flickering to extrinsic membrane stiffening by the solid-like biosurfactant β-Aescin.","authors":"Lara H Moleiro, Diego Herráez-Aguilar, Guillermo Solís-Fernández, Niccolo Caselli, Carina Dargel, Verónica I Dodero, José M Bautista, Thomas Hellweg, Francisco Monroy","doi":"10.1016/j.bpj.2025.03.027","DOIUrl":null,"url":null,"abstract":"<p><p>β-Aescin is a natural additive employed for treatments of vascular insufficiency, hence its impact in red blood cell (RBC)'s adaptivity has been conjectured. Here, we report a study about the mechanical impact of the membrane stiffener aescin on the flickering motions of live RBCs maintained at the homeostatic status. An active flickering, or nonequilibrium fluctuation dynamics has been revealed by mapping flickering motions in single RBCs treated or not with aescin. Experiments show that active RBC flickers adapt mechanically to β-escin, unlike the passive thermal fluctuations observed in lipid bilayers without an active skeleton. Mechanical connections for active flickering are theoretically argued to exist between an effective viscoelastic softness bestowed by the spectrin membrane cytoskeleton and the observed stiffness imposed by aescin as a rigidity modulator. From the unveiled diffusive mechanics, we model an adaptive RBC homeostasis that recapitulates the active flickering phenomenon as an optimal membrane softness upon a regulated friction as observed under aescin-induced membrane hardening. From a physiological perspective, RBC flicker adaptiveness to rigidization is discussed according to regulatory principles of energy conservation and minimal dissipation.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.03.027","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
β-Aescin is a natural additive employed for treatments of vascular insufficiency, hence its impact in red blood cell (RBC)'s adaptivity has been conjectured. Here, we report a study about the mechanical impact of the membrane stiffener aescin on the flickering motions of live RBCs maintained at the homeostatic status. An active flickering, or nonequilibrium fluctuation dynamics has been revealed by mapping flickering motions in single RBCs treated or not with aescin. Experiments show that active RBC flickers adapt mechanically to β-escin, unlike the passive thermal fluctuations observed in lipid bilayers without an active skeleton. Mechanical connections for active flickering are theoretically argued to exist between an effective viscoelastic softness bestowed by the spectrin membrane cytoskeleton and the observed stiffness imposed by aescin as a rigidity modulator. From the unveiled diffusive mechanics, we model an adaptive RBC homeostasis that recapitulates the active flickering phenomenon as an optimal membrane softness upon a regulated friction as observed under aescin-induced membrane hardening. From a physiological perspective, RBC flicker adaptiveness to rigidization is discussed according to regulatory principles of energy conservation and minimal dissipation.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.