Fátima Lucio-Martínez, Balázs Szilágyi, Rocío Uzal-Varela, Paulo Pérez-Lourido, David Esteban-Gómez, Nicolas Lepareur, Gyula Tircsó, C Platas-Iglesias
{"title":"[natY/90Y]Yttrium and [natLu/177Lu]Lutetium Complexation by Rigid H4OCTAPA Derivatives. Effect of Ligand Topology.","authors":"Fátima Lucio-Martínez, Balázs Szilágyi, Rocío Uzal-Varela, Paulo Pérez-Lourido, David Esteban-Gómez, Nicolas Lepareur, Gyula Tircsó, C Platas-Iglesias","doi":"10.1002/chem.202500799","DOIUrl":null,"url":null,"abstract":"<p><p>We present a detailed investigation on the coordination chemistry of [nat/90Y]Y3+ and [nat/177Lu]Lu3+ with the new acyclic chelator H4CHXOITAPA. This octadentate chelator forms nine-coordinated Y3+ and Lu3+ complexes thanks to the coordination of a water molecule, as demonstrated by the X-ray structure of [Y(HCHXOITAPA)(H2O)] and 1H, 13C and 89Y NMR studies in solution. These complexes display slightly higher thermodynamic stabilities compared with those of the known H4CHXOCTAPA and H4OCTAPA chelators, reaching log KYL and log KLuL values of 21.24(5) and 21.96(1), respectively. Kinetic studies indicate that these complexes dissociate mainly through the spontaneous and proton-assisted pathways at pH 7.4. The chelator can be readily radiolabeled with [90Y]Y3+ and [177Lu]Lu3+ at room temperature in 10 min. The radio-complexes are stable in human serum at 37 ºC, in contrast with the analogues of the known H4CHXOCTAPA and H4OCTAPA chelators, which experience significant dissociation under these conditions. Thus, the H4CHXOITAPA chelator represents the most promising candidate among the H4OCTAPA family for the development of 90Y- and 177Lu-based radiopharmaceuticals.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202500799"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202500799","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a detailed investigation on the coordination chemistry of [nat/90Y]Y3+ and [nat/177Lu]Lu3+ with the new acyclic chelator H4CHXOITAPA. This octadentate chelator forms nine-coordinated Y3+ and Lu3+ complexes thanks to the coordination of a water molecule, as demonstrated by the X-ray structure of [Y(HCHXOITAPA)(H2O)] and 1H, 13C and 89Y NMR studies in solution. These complexes display slightly higher thermodynamic stabilities compared with those of the known H4CHXOCTAPA and H4OCTAPA chelators, reaching log KYL and log KLuL values of 21.24(5) and 21.96(1), respectively. Kinetic studies indicate that these complexes dissociate mainly through the spontaneous and proton-assisted pathways at pH 7.4. The chelator can be readily radiolabeled with [90Y]Y3+ and [177Lu]Lu3+ at room temperature in 10 min. The radio-complexes are stable in human serum at 37 ºC, in contrast with the analogues of the known H4CHXOCTAPA and H4OCTAPA chelators, which experience significant dissociation under these conditions. Thus, the H4CHXOITAPA chelator represents the most promising candidate among the H4OCTAPA family for the development of 90Y- and 177Lu-based radiopharmaceuticals.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.