Germline transformation of the West Nile virus and avian malaria vector Culex quinquefasciatus Say using the piggyBac transposon system.

IF 3.2 2区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Katherine Nevard, Rajdeep Kaur, Tim Harvey-Samuel
{"title":"Germline transformation of the West Nile virus and avian malaria vector Culex quinquefasciatus Say using the piggyBac transposon system.","authors":"Katherine Nevard, Rajdeep Kaur, Tim Harvey-Samuel","doi":"10.1016/j.ibmb.2025.104309","DOIUrl":null,"url":null,"abstract":"<p><p>Culex quinquefasciatus Say is a mosquito which acts as a vector for numerous diseases including West Nile virus, lymphatic filariasis and avian malaria, over a broad geographical range. As the effectiveness of insecticidal mosquito control methods declines, the need has grown to develop genetic control methods to curb the spread of disease. The piggyBac transposon system - the most widely used genetic transformation tool in insects, including mosquitoes - generates quasi-random insertions of donor DNA into the host genome. However, despite the broad reported species range of piggyBac, previous attempts to use this tool to transform Culex quinquefasciatus mosquitoes have failed. Here we report the first successful transformation of Culex quinquefasciatus with the piggyBac transposon system. Using commercially synthesised piggyBac mRNA as a transposase source, we were able to generate three independent insertions of a ZsGreen fluorescent marker gene, with transformation efficiencies of up to 5%. Through this work, we have expanded the genetic toolkit available for the genetic manipulation of Culex mosquitoes and thus removed a barrier to developing novel genetic control methods in this important disease vector.</p>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":" ","pages":"104309"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.ibmb.2025.104309","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Culex quinquefasciatus Say is a mosquito which acts as a vector for numerous diseases including West Nile virus, lymphatic filariasis and avian malaria, over a broad geographical range. As the effectiveness of insecticidal mosquito control methods declines, the need has grown to develop genetic control methods to curb the spread of disease. The piggyBac transposon system - the most widely used genetic transformation tool in insects, including mosquitoes - generates quasi-random insertions of donor DNA into the host genome. However, despite the broad reported species range of piggyBac, previous attempts to use this tool to transform Culex quinquefasciatus mosquitoes have failed. Here we report the first successful transformation of Culex quinquefasciatus with the piggyBac transposon system. Using commercially synthesised piggyBac mRNA as a transposase source, we were able to generate three independent insertions of a ZsGreen fluorescent marker gene, with transformation efficiencies of up to 5%. Through this work, we have expanded the genetic toolkit available for the genetic manipulation of Culex mosquitoes and thus removed a barrier to developing novel genetic control methods in this important disease vector.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
5.30%
发文量
105
审稿时长
40 days
期刊介绍: This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信