Cancer Specific CAIX-Targeting Supramolecular Lysosome-Targeting Chimeras (Supra-LYTAC) for Targeted Protein Degradation.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dohyun Kim, Gyeongseok Yang, Chaelyeong Lim, Gaeun Park, Jaemo Lee, Youjung Sim, Ja-Hyoung Ryu
{"title":"Cancer Specific CAIX-Targeting Supramolecular Lysosome-Targeting Chimeras (Supra-LYTAC) for Targeted Protein Degradation.","authors":"Dohyun Kim, Gyeongseok Yang, Chaelyeong Lim, Gaeun Park, Jaemo Lee, Youjung Sim, Ja-Hyoung Ryu","doi":"10.1002/advs.202503134","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, targeted protein degradation (TPD) strategies have emerged as a promising solution to tackle undruggable proteins. While most TPD strategies target intracellular proteins, limited options exist for targeting extracellular or membrane proteins. Herein, cancer specific carbonic anhydrase IX (CAIX)-targeting supramolecular nanofibrous lysosome-targeting chimeras (Supra-LYTAC) is reported. Two self-assembling amphiphilic peptides are synthesized: one that interacts with the protein of interest (POI), and another that mediates lysosomal endocytosis by targeting a cancer-specific enzyme. Notably, these two peptides co-assemble into nanofibers capable of targeting cancer cells in a spatiotemporal manner. Through dynamic and multivalent binding, a ternary complex form (supramolecular chimeric nanostructure; CAIX-nanofiber-POI), which undergoes internalization into lysosomes where the POI is degraded through lysosomal catalytic activity. This study demonstrates the potential of supramolecular approaches to expand the scope of LYTAC technology, offering new opportunities for designing TPD strategies in the future.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2503134"},"PeriodicalIF":14.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202503134","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, targeted protein degradation (TPD) strategies have emerged as a promising solution to tackle undruggable proteins. While most TPD strategies target intracellular proteins, limited options exist for targeting extracellular or membrane proteins. Herein, cancer specific carbonic anhydrase IX (CAIX)-targeting supramolecular nanofibrous lysosome-targeting chimeras (Supra-LYTAC) is reported. Two self-assembling amphiphilic peptides are synthesized: one that interacts with the protein of interest (POI), and another that mediates lysosomal endocytosis by targeting a cancer-specific enzyme. Notably, these two peptides co-assemble into nanofibers capable of targeting cancer cells in a spatiotemporal manner. Through dynamic and multivalent binding, a ternary complex form (supramolecular chimeric nanostructure; CAIX-nanofiber-POI), which undergoes internalization into lysosomes where the POI is degraded through lysosomal catalytic activity. This study demonstrates the potential of supramolecular approaches to expand the scope of LYTAC technology, offering new opportunities for designing TPD strategies in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信