Ronald Tarazona Delgado, Rui Dos Santos Ferreira Filho, Carlos Rafael Borges Mendes
{"title":"The Cyanobacteria Genus Aphanothece: Bioactive Compounds and Applications in Biotechnology.","authors":"Ronald Tarazona Delgado, Rui Dos Santos Ferreira Filho, Carlos Rafael Borges Mendes","doi":"10.1007/s12010-025-05221-4","DOIUrl":null,"url":null,"abstract":"<p><p>Aphanothece is a genus of colonial cyanobacteria with a global distribution that is found in various aquatic and terrestrial environments. It has garnered interest because of its high content of amino acids, carbohydrates, fatty acids, and pigments, which possess bioactive and biotechnological properties. This review analyzes articles highlighting Aphanothece species in biotechnological contexts and describes their biochemical composition. Among its primary metabolites are glutamic acid, alanine, palmitic acid, chlorophyll a, echinenone, and β-carotene. The biotechnological potential of Aphanothece spans the fields of biofuel, health, agro-industry, and bioremediation. The notable bioactivities of species such us A. sacrum, A. pallida, and A. bullosa include photoprotective, immunostimulant, antimicrobial, anticancer, and biostimulant activities due to secondary metabolites such as mycosporine-like amino acids, peptides, betaines, and glycerophospholipids. The high production of hydrogen and lipids by A. halophytica supports its use in biofuels. Species such as A. microscopica are effective at treating agro-industrial and domestic effluents and water polluted by metals and hydrocarbons, alongside simultaneous CO<sub>2</sub> capture. This review provides information that can guide the sustainable use of Aphanothece species and identifies gaps in current knowledge, particularly in the development of commercial products. Continuous exploration of this genus can significantly promote environmental sustainability and biotechnological innovation.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05221-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aphanothece is a genus of colonial cyanobacteria with a global distribution that is found in various aquatic and terrestrial environments. It has garnered interest because of its high content of amino acids, carbohydrates, fatty acids, and pigments, which possess bioactive and biotechnological properties. This review analyzes articles highlighting Aphanothece species in biotechnological contexts and describes their biochemical composition. Among its primary metabolites are glutamic acid, alanine, palmitic acid, chlorophyll a, echinenone, and β-carotene. The biotechnological potential of Aphanothece spans the fields of biofuel, health, agro-industry, and bioremediation. The notable bioactivities of species such us A. sacrum, A. pallida, and A. bullosa include photoprotective, immunostimulant, antimicrobial, anticancer, and biostimulant activities due to secondary metabolites such as mycosporine-like amino acids, peptides, betaines, and glycerophospholipids. The high production of hydrogen and lipids by A. halophytica supports its use in biofuels. Species such as A. microscopica are effective at treating agro-industrial and domestic effluents and water polluted by metals and hydrocarbons, alongside simultaneous CO2 capture. This review provides information that can guide the sustainable use of Aphanothece species and identifies gaps in current knowledge, particularly in the development of commercial products. Continuous exploration of this genus can significantly promote environmental sustainability and biotechnological innovation.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.