Cytotoxic and Cellular Response of Doped Nb-NTO Nanoparticles Functionalized with Mentha arvensis and Mucuna pruriens Extracts on MDA-MB-231 Breast Cancer Cells.
Muhammad Awais Farooqi, Ji-Hyang Kim, Sehui Kim, Kyeoung Cheol Kim, Hafiz Muhammad Umer Farooqi, Dong-Sun Lee, Chul Ung Kang
{"title":"Cytotoxic and Cellular Response of Doped Nb-NTO Nanoparticles Functionalized with Mentha arvensis and Mucuna pruriens Extracts on MDA-MB-231 Breast Cancer Cells.","authors":"Muhammad Awais Farooqi, Ji-Hyang Kim, Sehui Kim, Kyeoung Cheol Kim, Hafiz Muhammad Umer Farooqi, Dong-Sun Lee, Chul Ung Kang","doi":"10.1007/s12010-025-05227-y","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) poses significant challenges as it lacks specific treatment approaches. In this study, we synthesized niobium-nitrogen-doped titanium dioxide (Nb-NTO) nanoparticles (NPs) functionalized with Mentha arvensis ethanolic and Mucuna pruriens methanolic extracts and evaluated their anti-cancer potential against MDA-MB-231 TNBC cells. The functionalization of doped Nb-NTO NPs with Mentha arvensis and Mucuna pruriens extract exhibited significant synergistic effects, reducing cell viability in a dose-dependent manner with enhanced cytotoxicity at lower concentrations compared to individual treatments. Microscopic analysis revealed morphological changes indicative of apoptosis and necrosis, while flow cytometry demonstrated increased apoptotic and necrotic cell populations in the combination-treated groups. These treatments also significantly reduced the secretion of pro-inflammatory cytokines IL-6 and IL-8, suggesting modulation of the inflammatory tumor microenvironment. Furthermore, the functionalized Nb-NTO NPs effectively targeted cancer stem cell (CSC) properties, inhibiting mammosphere formation and clonogenic survival and downregulating critical CSC markers, including c-Myc, OCT4, and NANOG. This study highlights the potential of Nb-NTO NPs functionalized with Mentha arvensis and Mucuna pruriens as a novel therapeutic strategy for TNBC, addressing key hallmarks of cancer, including apoptosis, inflammation, and CSC targeting. While these findings demonstrate promising in vitro anti-cancer efficacy, further in vivo validation and mechanistic studies are necessary to advance these treatments toward clinical anti-cancer applications.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05227-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges as it lacks specific treatment approaches. In this study, we synthesized niobium-nitrogen-doped titanium dioxide (Nb-NTO) nanoparticles (NPs) functionalized with Mentha arvensis ethanolic and Mucuna pruriens methanolic extracts and evaluated their anti-cancer potential against MDA-MB-231 TNBC cells. The functionalization of doped Nb-NTO NPs with Mentha arvensis and Mucuna pruriens extract exhibited significant synergistic effects, reducing cell viability in a dose-dependent manner with enhanced cytotoxicity at lower concentrations compared to individual treatments. Microscopic analysis revealed morphological changes indicative of apoptosis and necrosis, while flow cytometry demonstrated increased apoptotic and necrotic cell populations in the combination-treated groups. These treatments also significantly reduced the secretion of pro-inflammatory cytokines IL-6 and IL-8, suggesting modulation of the inflammatory tumor microenvironment. Furthermore, the functionalized Nb-NTO NPs effectively targeted cancer stem cell (CSC) properties, inhibiting mammosphere formation and clonogenic survival and downregulating critical CSC markers, including c-Myc, OCT4, and NANOG. This study highlights the potential of Nb-NTO NPs functionalized with Mentha arvensis and Mucuna pruriens as a novel therapeutic strategy for TNBC, addressing key hallmarks of cancer, including apoptosis, inflammation, and CSC targeting. While these findings demonstrate promising in vitro anti-cancer efficacy, further in vivo validation and mechanistic studies are necessary to advance these treatments toward clinical anti-cancer applications.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.