Transport and Reaction of Electrons and Molecules in Solid Electrolyte Interphases formed at Different Electrode Potentials: A Combined Experimental and Modeling Approach.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-04-02 DOI:10.1002/cssc.202402468
Falk Thorsten Krauss, Annalena Duncker, Bernhard Roling
{"title":"Transport and Reaction of Electrons and Molecules in Solid Electrolyte Interphases formed at Different Electrode Potentials: A Combined Experimental and Modeling Approach.","authors":"Falk Thorsten Krauss, Annalena Duncker, Bernhard Roling","doi":"10.1002/cssc.202402468","DOIUrl":null,"url":null,"abstract":"<p><p>Good passivation properties of the solid electrolyte interphase (SEI) on the graphite-based negative electrode are essential for a long cycle life of lithium-ion batteries. Nevertheless, the underlying electron and molecule transport mechanisms inside the SEI are poorly understood. Here, we elucidate transport and reaction in model-type SEIs formed at different electrode potentials by combining generator-collector experiments and electrochemical impedance spectroscopy with a diffusion-reaction modeling approach. In the generator-collector experiments, we use a four-electrode-based setup to compare the electrolyte reduction current density with a redox molecule (ferrocenium Fc<sup>+</sup>) reduction current density at an SEI-covered glassy carbon electrode. We find that the current density ratio depends on the SEI formation potential as well as on the formation time. The experimental results are compared to the prediction of a transport and reaction model, which accounts for reduction reactions inside the SEI as well as in the double layer at the SEI | bulk electrolyte interface. This model predicts four distinct diffusion and reaction regimes depending on the rate constant for the molecule-electron reaction. Using this combined approach, we obtain good estimates for the transport coefficients of electrons and molecules inside the SEI.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402468"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402468","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Good passivation properties of the solid electrolyte interphase (SEI) on the graphite-based negative electrode are essential for a long cycle life of lithium-ion batteries. Nevertheless, the underlying electron and molecule transport mechanisms inside the SEI are poorly understood. Here, we elucidate transport and reaction in model-type SEIs formed at different electrode potentials by combining generator-collector experiments and electrochemical impedance spectroscopy with a diffusion-reaction modeling approach. In the generator-collector experiments, we use a four-electrode-based setup to compare the electrolyte reduction current density with a redox molecule (ferrocenium Fc+) reduction current density at an SEI-covered glassy carbon electrode. We find that the current density ratio depends on the SEI formation potential as well as on the formation time. The experimental results are compared to the prediction of a transport and reaction model, which accounts for reduction reactions inside the SEI as well as in the double layer at the SEI | bulk electrolyte interface. This model predicts four distinct diffusion and reaction regimes depending on the rate constant for the molecule-electron reaction. Using this combined approach, we obtain good estimates for the transport coefficients of electrons and molecules inside the SEI.

在不同电极电位下形成的固体电解质界面中电子和分子的传递和反应:一种结合实验和建模的方法。
石墨基负极上固体电解质界面(SEI)的良好钝化性能是锂离子电池长循环寿命的关键。然而,人们对SEI内部潜在的电子和分子传输机制知之甚少。在这里,我们通过结合发电机-收集器实验和电化学阻抗谱与扩散反应建模方法来阐明在不同电极电位下形成的模型型sei的输运和反应。在发生器-集电极实验中,我们使用基于四电极的设置来比较在sei覆盖的玻碳电极上电解质还原电流密度与氧化还原分子(二茂铁Fc+)还原电流密度。我们发现电流密度比与SEI地层势和地层时间有关。实验结果与预测的输运和反应模型进行了比较,该模型考虑了SEI内部以及SEI |本体电解质界面双层中的还原反应。该模型根据分子-电子反应的速率常数预测了四种不同的扩散和反应机制。利用这种组合方法,我们得到了SEI内部电子和分子输运系数的良好估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信