From synthesis to properties: expanding the horizons of machine learning in nanomaterials research.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shanhui Diao, Qiong Wu, Shimei Li, Guochen Xu, Xiangling Ren, Longfei Tan, Guihua Jiang, Peng Song, Xianwei Meng
{"title":"From synthesis to properties: expanding the horizons of machine learning in nanomaterials research.","authors":"Shanhui Diao, Qiong Wu, Shimei Li, Guochen Xu, Xiangling Ren, Longfei Tan, Guihua Jiang, Peng Song, Xianwei Meng","doi":"10.1039/d4mh01909a","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology involves the manipulation of matter at dimensions ranging from 1 to 100 nanometers. Prediction of synthesis parameters, structure, properties and applications is a cascade process in nanomaterials research, each of these stages being interconnected and having a correlative influence on one another. Traditionally, the \"trial and error\" approach in nanomaterial research has several limitations, including time-consuming, laborious and resource-intensive. With the rise and vigorous development of artificial intelligence technology as the fourth paradigm of materials research, machine learning offers a significant research prospect for the accelerated new materials design, synthesis optimization and property prediction. In this review, the three key elements of machine learning including data, descriptors and machine learning methods for nanomaterial research are discussed. An overview of the applications of machine learning in nanomaterial research is provided, particularly focusing on various synthesis methods of single nanomaterials and property prediction of nanocomposites, through the framework of synthesis-structure-property-application relationships. Finally, the potential of this fast-growing field is highlighted, as well as the formidable challenges it faces.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01909a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanotechnology involves the manipulation of matter at dimensions ranging from 1 to 100 nanometers. Prediction of synthesis parameters, structure, properties and applications is a cascade process in nanomaterials research, each of these stages being interconnected and having a correlative influence on one another. Traditionally, the "trial and error" approach in nanomaterial research has several limitations, including time-consuming, laborious and resource-intensive. With the rise and vigorous development of artificial intelligence technology as the fourth paradigm of materials research, machine learning offers a significant research prospect for the accelerated new materials design, synthesis optimization and property prediction. In this review, the three key elements of machine learning including data, descriptors and machine learning methods for nanomaterial research are discussed. An overview of the applications of machine learning in nanomaterial research is provided, particularly focusing on various synthesis methods of single nanomaterials and property prediction of nanocomposites, through the framework of synthesis-structure-property-application relationships. Finally, the potential of this fast-growing field is highlighted, as well as the formidable challenges it faces.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信