Leveraging dielectrophoresis in inertial flow for versatile manipulation of micro and nanoparticles.

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2025-04-03 DOI:10.1039/d4lc01037j
Haotian Cha, Lingxi Ouyang, Xiangxun Chen, Yuao Wu, Xiaoyue Kang, Hongjie An, Weihua Li, Nam-Trung Nguyen, Jun Zhang
{"title":"Leveraging dielectrophoresis in inertial flow for versatile manipulation of micro and nanoparticles.","authors":"Haotian Cha, Lingxi Ouyang, Xiangxun Chen, Yuao Wu, Xiaoyue Kang, Hongjie An, Weihua Li, Nam-Trung Nguyen, Jun Zhang","doi":"10.1039/d4lc01037j","DOIUrl":null,"url":null,"abstract":"<p><p>The manipulation of micro and nanoparticles has extensive applications in biomedical research, clinical diagnostics, environmental monitoring, drug discovery, and the mining industry. Dielectrophoresis (DEP) utilises nonuniform electric fields to manipulate particles, offering a label-free, high-precision, and non-invasive method for both natural and synthetic particles. DEP manipulation has been well studied in the Stokes flow region with ultra-low Reynolds numbers (Re ≪ 1), where viscous effects dominate. However, its application in the inertial flow regime remains largely unexplored. This study aims to bridge the gap by coupling DEP and inertial flow for the manipulation of particles across micro and nano scales. First, we theoretically analysed the physical coupling of DEP and inertial lift forces along the vertical direction in microchannels, utilising symmetrical interdigitated electrode (IDE) arrays patterned on the top and bottom channel surfaces. We then experimentally investigated how the vertical coupling of DEP and inertial lift forces affects particle lateral focusing properties. The effects of DEP along the vertical direction were leveraged and amplified by the inertial effects along the lateral direction. Finally, we applied DEP in the inertial flow regime for size-based and dielectric property-based separation of particles and cells, as well as nanoparticle focusing and filtration. We believe that leveraging DEP in inertial flow will advance the field by providing a versatile and powerful method for the manipulation of micro and nanoparticles.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc01037j","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The manipulation of micro and nanoparticles has extensive applications in biomedical research, clinical diagnostics, environmental monitoring, drug discovery, and the mining industry. Dielectrophoresis (DEP) utilises nonuniform electric fields to manipulate particles, offering a label-free, high-precision, and non-invasive method for both natural and synthetic particles. DEP manipulation has been well studied in the Stokes flow region with ultra-low Reynolds numbers (Re ≪ 1), where viscous effects dominate. However, its application in the inertial flow regime remains largely unexplored. This study aims to bridge the gap by coupling DEP and inertial flow for the manipulation of particles across micro and nano scales. First, we theoretically analysed the physical coupling of DEP and inertial lift forces along the vertical direction in microchannels, utilising symmetrical interdigitated electrode (IDE) arrays patterned on the top and bottom channel surfaces. We then experimentally investigated how the vertical coupling of DEP and inertial lift forces affects particle lateral focusing properties. The effects of DEP along the vertical direction were leveraged and amplified by the inertial effects along the lateral direction. Finally, we applied DEP in the inertial flow regime for size-based and dielectric property-based separation of particles and cells, as well as nanoparticle focusing and filtration. We believe that leveraging DEP in inertial flow will advance the field by providing a versatile and powerful method for the manipulation of micro and nanoparticles.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信