IRF4 as a molecular biomarker in pan-cancer through multiple omics integrative analysis.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Yiqing Tan, Yiping Yang, Mingjun Zhang, Ni Li, Lei Hu, Mingyou Deng, Yin Xiao, Yingying Wang, Fuhua Tian, Ran Sun
{"title":"IRF4 as a molecular biomarker in pan-cancer through multiple omics integrative analysis.","authors":"Yiqing Tan, Yiping Yang, Mingjun Zhang, Ni Li, Lei Hu, Mingyou Deng, Yin Xiao, Yingying Wang, Fuhua Tian, Ran Sun","doi":"10.1039/d4ay02269f","DOIUrl":null,"url":null,"abstract":"<p><p>IRF4, characterized by its unique helix-turn-helix DNA-binding motif, is a member of the interferon regulatory factor (IRF) family. It plays a critical role in regulating host defense mechanisms, including innate and adaptive immune responses, as well as oncogenesis. However, the precise role of IRF4 in malignant tumors remains poorly understood. In this study, we first investigated IRF4 gene expression across various cancer types and its distribution within different molecular and immunological subtypes, providing a comprehensive understanding of its expression patterns in pan-cancer. We further explored the interacting proteins, diagnostic significance, molecular characteristics, prognostic relevance, and biological functions of IRF4 in diverse cancers. Focusing on colorectal cancer (CRC), we conducted a detailed analysis of IRF4, examining its associations with clinical features and outcomes across multiple clinical subgroups and databases. Additionally, we assessed IRF4 expression at both transcriptional and translational levels in CRC tumor specimens using tissue microarrays. Our findings revealed that IRF4 expression varies significantly not only across cancer types but also among molecular and immunological subtypes. In CRC, elevated IRF4 expression was associated with poorer overall survival. Notably, IRF4 was predominantly expressed in immune cells and showed a strong correlation with tumor immune regulation. Given its high predictive accuracy for cancer outcomes and robust prognostic associations, IRF4 may serve as a valuable prognostic biomarker for CRC. In conclusion, IRF4 represents a unique molecular biomarker for pan-cancer prognosis and an independent prognostic risk factor for CRC. Its critical role in immune regulation also positions IRF4 as a promising target for immunotherapeutic strategies in CRC.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay02269f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

IRF4, characterized by its unique helix-turn-helix DNA-binding motif, is a member of the interferon regulatory factor (IRF) family. It plays a critical role in regulating host defense mechanisms, including innate and adaptive immune responses, as well as oncogenesis. However, the precise role of IRF4 in malignant tumors remains poorly understood. In this study, we first investigated IRF4 gene expression across various cancer types and its distribution within different molecular and immunological subtypes, providing a comprehensive understanding of its expression patterns in pan-cancer. We further explored the interacting proteins, diagnostic significance, molecular characteristics, prognostic relevance, and biological functions of IRF4 in diverse cancers. Focusing on colorectal cancer (CRC), we conducted a detailed analysis of IRF4, examining its associations with clinical features and outcomes across multiple clinical subgroups and databases. Additionally, we assessed IRF4 expression at both transcriptional and translational levels in CRC tumor specimens using tissue microarrays. Our findings revealed that IRF4 expression varies significantly not only across cancer types but also among molecular and immunological subtypes. In CRC, elevated IRF4 expression was associated with poorer overall survival. Notably, IRF4 was predominantly expressed in immune cells and showed a strong correlation with tumor immune regulation. Given its high predictive accuracy for cancer outcomes and robust prognostic associations, IRF4 may serve as a valuable prognostic biomarker for CRC. In conclusion, IRF4 represents a unique molecular biomarker for pan-cancer prognosis and an independent prognostic risk factor for CRC. Its critical role in immune regulation also positions IRF4 as a promising target for immunotherapeutic strategies in CRC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信