Fc Multisite Conjugation and Prolonged Delivery of the Folate-Targeted Drug Conjugate EC140.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Yan Zheng, Hong Cheng, Sibo Jiang, Wanyi Tai
{"title":"Fc Multisite Conjugation and Prolonged Delivery of the Folate-Targeted Drug Conjugate EC140.","authors":"Yan Zheng, Hong Cheng, Sibo Jiang, Wanyi Tai","doi":"10.1021/acs.bioconjchem.5c00037","DOIUrl":null,"url":null,"abstract":"<p><p>Small molecule-drug conjugate (SMDC) is a targeted drug delivery technology that develops in parallel with the antibody-drug conjugate. However, the clinical translation of SMDC faces challenges due to its limited circulating half-life in vivo. The drawback in pharmacokinetics is that it restricts the exposure time of SMDC to tumor tissues and ultimately reduces the therapeutic efficacy. In this study, we chemically conjugated a folate-targeted SMDC EC140 to the long-circulating Fc protein at multiple sites, yielding a stable and high-DAR Fc-SMDC conjugate (Fc-EC140). Fc-EC140 can bear approximately 4 molecules of EC140 per Fc protein (drug-antibody ratio = 4.1) and display enhanced potency in folate receptor (FR)-positive tumor cells compared to the SMDC comparator. In addition, Fc-EC140 retains the FcRn-mediated recycling function and displays an extended half-life of 28 h in the mice. In vivo, antitumor experiments demonstrate that intravenous administration of Fc-EC140 (Q7D × 3 at a dose of 15 mg/kg) nearly cures the KB tumors, which is far more effective than the comparator EC140 administrated at equivalent doses. This study presents a new strategy for the targeted delivery of SMDC.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00037","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Small molecule-drug conjugate (SMDC) is a targeted drug delivery technology that develops in parallel with the antibody-drug conjugate. However, the clinical translation of SMDC faces challenges due to its limited circulating half-life in vivo. The drawback in pharmacokinetics is that it restricts the exposure time of SMDC to tumor tissues and ultimately reduces the therapeutic efficacy. In this study, we chemically conjugated a folate-targeted SMDC EC140 to the long-circulating Fc protein at multiple sites, yielding a stable and high-DAR Fc-SMDC conjugate (Fc-EC140). Fc-EC140 can bear approximately 4 molecules of EC140 per Fc protein (drug-antibody ratio = 4.1) and display enhanced potency in folate receptor (FR)-positive tumor cells compared to the SMDC comparator. In addition, Fc-EC140 retains the FcRn-mediated recycling function and displays an extended half-life of 28 h in the mice. In vivo, antitumor experiments demonstrate that intravenous administration of Fc-EC140 (Q7D × 3 at a dose of 15 mg/kg) nearly cures the KB tumors, which is far more effective than the comparator EC140 administrated at equivalent doses. This study presents a new strategy for the targeted delivery of SMDC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信