Mechanical properties of Staphylococcus aureus and Pseudomonas aeruginosa dual-species biofilms grown in chronic wound-based models.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-04-03 DOI:10.1039/d4sm01441c
Bikash Bhattarai, Gordon F Christopher
{"title":"Mechanical properties of <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> dual-species biofilms grown in chronic wound-based models.","authors":"Bikash Bhattarai, Gordon F Christopher","doi":"10.1039/d4sm01441c","DOIUrl":null,"url":null,"abstract":"<p><p>Wound infections become chronic due to biofilm formation by pathogenic bacteria; two such pathogens are <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i>. These bacteria are known to form polymicrobial biofilms in wounds, which exhibit increased colonization rates, enhanced chronicity, and greater resistance to treatment. Previously, the impacts of a wound bed environment on the mechanical properties of <i>P. aeruginosa</i> biofilms have been explored, and in this work the role of a wound bed environment in the viscoelasticity and microstructure of polymicrobial biofilms is characterized. We hypothesize that common wound bed proteins mediate interactions between <i>S. aureus</i> and <i>P. aeruginosa</i> to enable the formation of more elastic and stiff biofilms. Growth media with varying protein content as well as additional collagen, a protein associated with a wound extracellular matrix, were utilized to test our hypothesis. Microrheology indicates that both <i>P. aeruginosa</i> and <i>S. aureus</i> form relatively stiffer single-species biofilms in a wound environment with collagen. <i>S. aureus</i> produced stiffer biofilms in the presence of collagen, regardless of other wound proteins, likely due to its interactions with collagen. When both species were grown together in wound-like media, synergistic effects led to stiffer dual-species biofilms compared to their single-species forms. Under all growth conditions, collagen significantly contributed to stiffening <i>P. aeruginosa</i>/<i>S. aureus</i> dual-species biofilms, suggesting that it mediates complex interspecies interactions. High-resolution imaging and analysis revealed that collagen also influenced the microstructures of <i>P. aeruginosa</i>/<i>S. aureus</i> dual-species biofilms. In media containing wound proteins and collagen, <i>S. aureus</i> clusters were larger and exhibited more complex shapes. These results indicate that the wound bed environment not only provides improved antibacterial resistance due to cooperative interactions, but also improved mechanical protection, which impact common treatment methods like debridement.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01441c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wound infections become chronic due to biofilm formation by pathogenic bacteria; two such pathogens are Staphylococcus aureus and Pseudomonas aeruginosa. These bacteria are known to form polymicrobial biofilms in wounds, which exhibit increased colonization rates, enhanced chronicity, and greater resistance to treatment. Previously, the impacts of a wound bed environment on the mechanical properties of P. aeruginosa biofilms have been explored, and in this work the role of a wound bed environment in the viscoelasticity and microstructure of polymicrobial biofilms is characterized. We hypothesize that common wound bed proteins mediate interactions between S. aureus and P. aeruginosa to enable the formation of more elastic and stiff biofilms. Growth media with varying protein content as well as additional collagen, a protein associated with a wound extracellular matrix, were utilized to test our hypothesis. Microrheology indicates that both P. aeruginosa and S. aureus form relatively stiffer single-species biofilms in a wound environment with collagen. S. aureus produced stiffer biofilms in the presence of collagen, regardless of other wound proteins, likely due to its interactions with collagen. When both species were grown together in wound-like media, synergistic effects led to stiffer dual-species biofilms compared to their single-species forms. Under all growth conditions, collagen significantly contributed to stiffening P. aeruginosa/S. aureus dual-species biofilms, suggesting that it mediates complex interspecies interactions. High-resolution imaging and analysis revealed that collagen also influenced the microstructures of P. aeruginosa/S. aureus dual-species biofilms. In media containing wound proteins and collagen, S. aureus clusters were larger and exhibited more complex shapes. These results indicate that the wound bed environment not only provides improved antibacterial resistance due to cooperative interactions, but also improved mechanical protection, which impact common treatment methods like debridement.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信