Single-atom molecular editing: transformative advances in carbocyclic and heterocyclic frameworks.

IF 2.9 3区 化学 Q1 CHEMISTRY, ORGANIC
Parvin Moghimi, Hossein Sabet-Sarvestani, Vahid Moghimi, Nazanin Norozi-Shad, Michal Szostak
{"title":"Single-atom molecular editing: transformative advances in carbocyclic and heterocyclic frameworks.","authors":"Parvin Moghimi, Hossein Sabet-Sarvestani, Vahid Moghimi, Nazanin Norozi-Shad, Michal Szostak","doi":"10.1039/d5ob00272a","DOIUrl":null,"url":null,"abstract":"<p><p>Single-atom editing has emerged as a transformative strategy in organic synthesis, enabling precise modification of carbocyclic and heterocyclic frameworks by selectively targeting single atoms. These frameworks are crucial backbones of pharmaceuticals, agrochemicals, and advanced materials, making this approach powerful for organic chemists. In drug discovery and natural product synthesis, single-atom editing diversifies molecular scaffolds and tailors molecular properties to enhance pharmacological activity. In heterocyclic synthesis, this approach enables controlled heteroatom substitution, addition or deletion in an unprecedented and highly selective manner compared to traditional methods. Recent advances in transition-metal catalysis, organocatalysis, photoredox catalysis, and heterocycle-to-heterocycle metamorphosis have expanded the versatility of single-atom editing, enabling the synthesis of various carbocyclic and heterocyclic compounds. Principally, this approach has been exploited to design new architectures that are not easily accessible by other methods and to establish major improvements in the synthesis of known scaffolds, providing more efficient and sustainable routes towards large-scale chemical synthesis. This review overviews recent advances, focusing on carbocyclic and heterocyclic frameworks, and is organized by key single-atom editing strategies, such as ring contractions, atom deletions, ring expansions, and atom insertions. The review highlights key transformations like Favorskii and Wolff rearrangements, alongside modern photochemical and transition-metal-catalyzed processes, to provide a broad overview of synthetic applications and inspire further advancements in targeted molecular edits.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ob00272a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom editing has emerged as a transformative strategy in organic synthesis, enabling precise modification of carbocyclic and heterocyclic frameworks by selectively targeting single atoms. These frameworks are crucial backbones of pharmaceuticals, agrochemicals, and advanced materials, making this approach powerful for organic chemists. In drug discovery and natural product synthesis, single-atom editing diversifies molecular scaffolds and tailors molecular properties to enhance pharmacological activity. In heterocyclic synthesis, this approach enables controlled heteroatom substitution, addition or deletion in an unprecedented and highly selective manner compared to traditional methods. Recent advances in transition-metal catalysis, organocatalysis, photoredox catalysis, and heterocycle-to-heterocycle metamorphosis have expanded the versatility of single-atom editing, enabling the synthesis of various carbocyclic and heterocyclic compounds. Principally, this approach has been exploited to design new architectures that are not easily accessible by other methods and to establish major improvements in the synthesis of known scaffolds, providing more efficient and sustainable routes towards large-scale chemical synthesis. This review overviews recent advances, focusing on carbocyclic and heterocyclic frameworks, and is organized by key single-atom editing strategies, such as ring contractions, atom deletions, ring expansions, and atom insertions. The review highlights key transformations like Favorskii and Wolff rearrangements, alongside modern photochemical and transition-metal-catalyzed processes, to provide a broad overview of synthetic applications and inspire further advancements in targeted molecular edits.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic & Biomolecular Chemistry
Organic & Biomolecular Chemistry 化学-有机化学
CiteScore
5.50
自引率
9.40%
发文量
1056
审稿时长
1.3 months
期刊介绍: Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信