{"title":"Porous Sodium Carboxymethyl Starch Microspheres for Hemostasis and Skin Wound Healing.","authors":"Qing Zhou, Wenjie Chen, Han Wang, Cuicui Wu, Qianqian Zhu, Lei Luo, Xiao Zheng, Chenglong Yu, Aijun Guo, Jianjin Wang, Shunqing Tang","doi":"10.1021/acsabm.4c01933","DOIUrl":null,"url":null,"abstract":"<p><p>An effective and rapid hemostatic material with flexible properties for clinical wound dressings is still an unmet need. Herein, a porous sodium carboxymethyl starch (CMS-Na-P) hemostatic microsphere was successfully fabricated through polysaccharide fluffy aggregate (PSFA) technology with a facile and low-cost process. CMS-Na-P exhibited rapid water absorption capabilities alongside favorable cytocompatibility and hemocompatibility. Additionally, CMS-Na-P could absorb red blood cells (RBCs), adhere to and activate platelets, and shorten clotting time <i>in vitro</i>. More importantly, its good <i>in vivo</i> hemostatic ability was further demonstrated against hemorrhage in rat liver and tail, pig superficial skin, superficial body vein, superficial abdominal vein, and femoral artery. Meanwhile, in a rat full-thickness skin defect model, CMS-Na-P could enhance wound healing through accelerated epidermal regeneration and collagen deposition. These properties make CMS-Na-P a promising candidate for treating bleeding and full-thickness wounds.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
An effective and rapid hemostatic material with flexible properties for clinical wound dressings is still an unmet need. Herein, a porous sodium carboxymethyl starch (CMS-Na-P) hemostatic microsphere was successfully fabricated through polysaccharide fluffy aggregate (PSFA) technology with a facile and low-cost process. CMS-Na-P exhibited rapid water absorption capabilities alongside favorable cytocompatibility and hemocompatibility. Additionally, CMS-Na-P could absorb red blood cells (RBCs), adhere to and activate platelets, and shorten clotting time in vitro. More importantly, its good in vivo hemostatic ability was further demonstrated against hemorrhage in rat liver and tail, pig superficial skin, superficial body vein, superficial abdominal vein, and femoral artery. Meanwhile, in a rat full-thickness skin defect model, CMS-Na-P could enhance wound healing through accelerated epidermal regeneration and collagen deposition. These properties make CMS-Na-P a promising candidate for treating bleeding and full-thickness wounds.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.