In Situ Photochemical Synthesis of Environmentally Friendly Conductive Nano-Ink

IF 2.5 4区 化学 Q3 POLYMER SCIENCE
Melisa Konar, Ebru Turgut Him, Nergis Guler, Ezgi Nur Balci, Nergis Arsu
{"title":"In Situ Photochemical Synthesis of Environmentally Friendly Conductive Nano-Ink","authors":"Melisa Konar,&nbsp;Ebru Turgut Him,&nbsp;Nergis Guler,&nbsp;Ezgi Nur Balci,&nbsp;Nergis Arsu","doi":"10.1002/macp.202400367","DOIUrl":null,"url":null,"abstract":"<p>Advancements in nanotechnology allow for the development of in situ or ex situ prepared nanocoatings and nanoparticles which are valuable in the electronics industry due to their intrinsic physical and chemical properties. Printed electronics, intended for applications such as flexible displays and smart labels, offer a distinct advantage over conventional products. The primary components used in printed electronics are the nano-ink containing polymer matrix and the substrate for printing. Gold, silver, and copper are commonly chosen for these processes because of their excellent electrical conductivity. In the electronics industry, it is well-known that producing conductive ink typically requires high temperatures and extended processing times, as is the case with conventional methods. In this study, in situ prepared silver nanoparticles (AgNPs) in a crosslinked polymeric matrix are achieved simultaneously using environmentally friendly polyvinyl alcohol (PVA) and acrylamide via photopolymerization. The generated radicals facilitated the formation of silver nano particles while simultaneously forming a cross-linked network that underwent further processing to transform into ink. The obtained polymer ink formulation is suitable for use with a refillable pen, and it is determined that it dries shortly after writing on surfaces such as paper and glass and exhibits high durability under room conditions.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 7","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400367","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in nanotechnology allow for the development of in situ or ex situ prepared nanocoatings and nanoparticles which are valuable in the electronics industry due to their intrinsic physical and chemical properties. Printed electronics, intended for applications such as flexible displays and smart labels, offer a distinct advantage over conventional products. The primary components used in printed electronics are the nano-ink containing polymer matrix and the substrate for printing. Gold, silver, and copper are commonly chosen for these processes because of their excellent electrical conductivity. In the electronics industry, it is well-known that producing conductive ink typically requires high temperatures and extended processing times, as is the case with conventional methods. In this study, in situ prepared silver nanoparticles (AgNPs) in a crosslinked polymeric matrix are achieved simultaneously using environmentally friendly polyvinyl alcohol (PVA) and acrylamide via photopolymerization. The generated radicals facilitated the formation of silver nano particles while simultaneously forming a cross-linked network that underwent further processing to transform into ink. The obtained polymer ink formulation is suitable for use with a refillable pen, and it is determined that it dries shortly after writing on surfaces such as paper and glass and exhibits high durability under room conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Chemistry and Physics
Macromolecular Chemistry and Physics 化学-高分子科学
CiteScore
4.30
自引率
4.00%
发文量
278
审稿时长
1.4 months
期刊介绍: Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信