{"title":"Understanding and Tuning Fe-Doping on Zn–Fe Layered Double Hydroxide Particle and Photocatalytic Properties","authors":"Shaoqing Qu, Ruiman Ma, Igor Efimov, Eftychios Hadjittofis, Sergio Vernuccio, Kyra Sedransk Campbell","doi":"10.1002/aesr.202400309","DOIUrl":null,"url":null,"abstract":"<p>Zn-based layered double hydroxides (LDHs) are promising photocatalytic materials, but their synthesis faces environmental and economic challenges. Oxidative ionothermal synthesis (OIS) offers a green route for zinc oxide synthesis using ionic liquids. To reduce costs, the OIS method uses recovered zinc-containing mixed metal systems, such as electric arc furnace dust, instead of pure metallic Zn. Understanding the interaction of Zn with impure metals during oxidation is essential. This study employs 1-Butyl-3-methylimidazolium chloride ([BMIM]Cl) as the solvent and Fe-doped metallic Zn, the most common waste-stream metal, as the starting material. This study applies quartz crystal microbalance with dissipation to monitor product formation, and X-ray diffraction and scanning electron microscopy to characterize composition and morphology. Results show that FeCl<sub>2</sub> doping accelerates the reaction, transforming simonkolleite to Zn–Fe LDH with tunable morphologies. A reaction mechanism for Zn in [BMIM]Cl with FeCl<sub>2</sub> is proposed. Photocatalytic hydrogen production tests reveal a favorable hydrogen evolution rate of 20.9 μmol h<sup>−1</sup> g<sup>−1</sup> with 0.45 M FeCl<sub>2</sub> doping, attributed to improved surface structure and crystallinity of the hydrotalcite.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400309","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Zn-based layered double hydroxides (LDHs) are promising photocatalytic materials, but their synthesis faces environmental and economic challenges. Oxidative ionothermal synthesis (OIS) offers a green route for zinc oxide synthesis using ionic liquids. To reduce costs, the OIS method uses recovered zinc-containing mixed metal systems, such as electric arc furnace dust, instead of pure metallic Zn. Understanding the interaction of Zn with impure metals during oxidation is essential. This study employs 1-Butyl-3-methylimidazolium chloride ([BMIM]Cl) as the solvent and Fe-doped metallic Zn, the most common waste-stream metal, as the starting material. This study applies quartz crystal microbalance with dissipation to monitor product formation, and X-ray diffraction and scanning electron microscopy to characterize composition and morphology. Results show that FeCl2 doping accelerates the reaction, transforming simonkolleite to Zn–Fe LDH with tunable morphologies. A reaction mechanism for Zn in [BMIM]Cl with FeCl2 is proposed. Photocatalytic hydrogen production tests reveal a favorable hydrogen evolution rate of 20.9 μmol h−1 g−1 with 0.45 M FeCl2 doping, attributed to improved surface structure and crystallinity of the hydrotalcite.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).