Spin Recovery of High-Angle-of-Attack Aircraft With Altitude Gain Reduction in the Presence of Aerodynamic Uncertainty: A MIMO Super-Twisting Sliding Mode Approach

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Ahmad Bagheri, Mohammad Danesh
{"title":"Spin Recovery of High-Angle-of-Attack Aircraft With Altitude Gain Reduction in the Presence of Aerodynamic Uncertainty: A MIMO Super-Twisting Sliding Mode Approach","authors":"Ahmad Bagheri,&nbsp;Mohammad Danesh","doi":"10.1049/cth2.70018","DOIUrl":null,"url":null,"abstract":"<p>To recover steady, straight-level flight of a high-angle-of-attack aircraft from its oscillatory spin, a MIMO super-twisting sliding control approach is proposed in this study. Since at high angles of attack, the aerodynamics governing the aircraft is highly nonlinear, tabulated data are utilised to ensure the validity of the results up to an angle of attack of 90°. Regarding uncertain aerodynamic coefficients, the robustness of the control approach is necessary. It is shown that the first-order classical sliding control and power rate reaching law methods are successful approaches to recover an aircraft from its state of spin in the absence of aerodynamic parameter uncertainties. However, in the presence of these uncertainties, chattering affects their performance and the altitude required to perform the recovery manoeuvre, referred to as altitude gain, significantly increases. To overcome these issues, a second-order sliding control algorithm is proposed in this study. The system outputs are considered as roll, pitch, rate of yaw change to attain level flight, and rate of change of altitude to assure straight flight. Thus, a 4 × 4 super-twisting SMC scheme is developed. Finite-time convergence of sliding variables, which guarantees asymptotic stability of the aircraft control system, is proven via the Lyapunov direct method. Simulation results illustrate that the proposed control algorithm serves not only as a reliable approach to perform the recovery manoeuvre but also as a highly effective method to overcome aerodynamic uncertainties without inducing chattering in control inputs. In addition, it enables the recovery manoeuvre to be performed with lower altitude gain.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To recover steady, straight-level flight of a high-angle-of-attack aircraft from its oscillatory spin, a MIMO super-twisting sliding control approach is proposed in this study. Since at high angles of attack, the aerodynamics governing the aircraft is highly nonlinear, tabulated data are utilised to ensure the validity of the results up to an angle of attack of 90°. Regarding uncertain aerodynamic coefficients, the robustness of the control approach is necessary. It is shown that the first-order classical sliding control and power rate reaching law methods are successful approaches to recover an aircraft from its state of spin in the absence of aerodynamic parameter uncertainties. However, in the presence of these uncertainties, chattering affects their performance and the altitude required to perform the recovery manoeuvre, referred to as altitude gain, significantly increases. To overcome these issues, a second-order sliding control algorithm is proposed in this study. The system outputs are considered as roll, pitch, rate of yaw change to attain level flight, and rate of change of altitude to assure straight flight. Thus, a 4 × 4 super-twisting SMC scheme is developed. Finite-time convergence of sliding variables, which guarantees asymptotic stability of the aircraft control system, is proven via the Lyapunov direct method. Simulation results illustrate that the proposed control algorithm serves not only as a reliable approach to perform the recovery manoeuvre but also as a highly effective method to overcome aerodynamic uncertainties without inducing chattering in control inputs. In addition, it enables the recovery manoeuvre to be performed with lower altitude gain.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信