A Triazine-Based Hole Transport Material for Durable Perovskite Solar Cells

IF 6.2 Q2 ENERGY & FUELS
Bo Hyun Lee, Seri Lee, Yuichiro Hayashi, Hideaki Takahashi, Yuta Saegusa, Hiroshi Sato, Naoyuki Shibayama, Hyun-Seok Cho, Tsutomu Miyasaka, Gyu Min Kim, Se Young Oh
{"title":"A Triazine-Based Hole Transport Material for Durable Perovskite Solar Cells","authors":"Bo Hyun Lee,&nbsp;Seri Lee,&nbsp;Yuichiro Hayashi,&nbsp;Hideaki Takahashi,&nbsp;Yuta Saegusa,&nbsp;Hiroshi Sato,&nbsp;Naoyuki Shibayama,&nbsp;Hyun-Seok Cho,&nbsp;Tsutomu Miyasaka,&nbsp;Gyu Min Kim,&nbsp;Se Young Oh","doi":"10.1002/aesr.202400299","DOIUrl":null,"url":null,"abstract":"<p>Hole-transport materials (HTMs) with suitable band alignment and simplified fabrication processes are essential to enhance the performance of perovskite solar cells (PSCs) with n–i–p structures. Although 2,2′,7,7′-tetrakis[<i>N</i>,<i>N</i>-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-OMeTAD) has been a common HTM in PSCs, its complex synthesis process and high cost hinder its commercialization. Herein, a donor–acceptor–donor (D–A–D)-type novel small-molecule HTM, 6-phenyl-1,3,5-triazine-2,4-bis[di(4-methoxyphenyl)amino]carbazole (PTBC), synthesized using low-cost materials and a highly simplified one-step process, is reported. PTBC passivates perovskite (PVK) surface defects and forms an appropriate energy band alignment with the PVK light absorption layer, enhancing the hole extraction capability. The hydrophobic nature of PTBC additionally prevents the degradation of the PVK layer caused by conventional dopants. The best PTBC-based PSC yields a power conversion efficiency (PCE) of up to 20.17%, retaining 90.96% of initial performance stored after 2568 h. This novel HTM, PTBC, is expected to pave the way for the commercialization of cost-effective and long-term stable PSCs as an alternative solution to overcome the limitations associated with Spiro-OMeTAD.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400299","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Hole-transport materials (HTMs) with suitable band alignment and simplified fabrication processes are essential to enhance the performance of perovskite solar cells (PSCs) with n–i–p structures. Although 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-OMeTAD) has been a common HTM in PSCs, its complex synthesis process and high cost hinder its commercialization. Herein, a donor–acceptor–donor (D–A–D)-type novel small-molecule HTM, 6-phenyl-1,3,5-triazine-2,4-bis[di(4-methoxyphenyl)amino]carbazole (PTBC), synthesized using low-cost materials and a highly simplified one-step process, is reported. PTBC passivates perovskite (PVK) surface defects and forms an appropriate energy band alignment with the PVK light absorption layer, enhancing the hole extraction capability. The hydrophobic nature of PTBC additionally prevents the degradation of the PVK layer caused by conventional dopants. The best PTBC-based PSC yields a power conversion efficiency (PCE) of up to 20.17%, retaining 90.96% of initial performance stored after 2568 h. This novel HTM, PTBC, is expected to pave the way for the commercialization of cost-effective and long-term stable PSCs as an alternative solution to overcome the limitations associated with Spiro-OMeTAD.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信