Close Correlation Between Vertically Integrated Tropospheric Water Vapor and the Downward, Broadband Thermal-Infrared Irradiance at the Ground: Observations in the Central Arctic During MOSAiC

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Clara Seidel, Dietrich Althausen, Albert Ansmann, Manfred Wendisch, Hannes Griesche, Martin Radenz, Julian Hofer, Sandro Dahlke, Marion Maturilli, Andreas Walbröl, Holger Baars, Ronny Engelmann
{"title":"Close Correlation Between Vertically Integrated Tropospheric Water Vapor and the Downward, Broadband Thermal-Infrared Irradiance at the Ground: Observations in the Central Arctic During MOSAiC","authors":"Clara Seidel,&nbsp;Dietrich Althausen,&nbsp;Albert Ansmann,&nbsp;Manfred Wendisch,&nbsp;Hannes Griesche,&nbsp;Martin Radenz,&nbsp;Julian Hofer,&nbsp;Sandro Dahlke,&nbsp;Marion Maturilli,&nbsp;Andreas Walbröl,&nbsp;Holger Baars,&nbsp;Ronny Engelmann","doi":"10.1029/2024JD042378","DOIUrl":null,"url":null,"abstract":"<p>The impact of the vertical distribution of tropospheric water vapor on the cloud-free downward, broadband thermal-infrared irradiance <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>F</mi>\n <mtext>TIR</mtext>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({F}_{\\text{TIR}}\\right)$</annotation>\n </semantics></math> was quantified using observations in the Central Arctic, north of 85°N, collected during the Arctic winter. The water vapor profiles were measured with a temporal resolution of <span></span><math>\n <semantics>\n <mrow>\n <mn>30</mn>\n <mspace></mspace>\n <mi>s</mi>\n </mrow>\n <annotation> $30\\,\\mathrm{s}$</annotation>\n </semantics></math> using a Raman lidar. The observations revealed maximum values of integrated water vapor (IWV) contents of <span></span><math>\n <semantics>\n <mrow>\n <mn>3.6</mn>\n <mspace></mspace>\n <mi>k</mi>\n <mi>g</mi>\n <mspace></mspace>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $3.6\\,\\mathrm{k}\\mathrm{g}\\ {\\mathrm{m}}^{-\\mathrm{2}}$</annotation>\n </semantics></math>. Seven measurement cases of several-hour durations of slowly changing air masses were examined. Furthermore, 53 rather short-term (10 min) measurement cases were studied. The temporal evolution of the slowly changing air masses revealed a linear relationship between <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mtext>TIR</mtext>\n </msub>\n </mrow>\n <annotation> ${F}_{\\text{TIR}}$</annotation>\n </semantics></math> and IWV with slopes between 7.17 and <span></span><math>\n <semantics>\n <mrow>\n <mn>12.95</mn>\n <mspace></mspace>\n <mi>W</mi>\n <mspace></mspace>\n <mi>k</mi>\n <msup>\n <mi>g</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $12.95\\,\\mathrm{W}\\ \\mathrm{k}{\\mathrm{g}}^{-\\mathrm{1}}$</annotation>\n </semantics></math> and a coefficient of determination larger than 0.95 for most of the selected cases. The slopes and the ordinate intercepts showed a dependence on the water vapor-weighted mean temperature (representative temperature of the water vapor distribution). The temperature determined with the Stefan-Boltzmann law from <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mtext>TIR</mtext>\n </msub>\n </mrow>\n <annotation> ${F}_{\\text{TIR}}$</annotation>\n </semantics></math> correlated with the representative temperature with a coefficient of determination of 0.92. The analysis of 53 independent short-term observations of different air masses confirmed the linear relationship between <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mtext>TIR</mtext>\n </msub>\n </mrow>\n <annotation> ${F}_{\\text{TIR}}$</annotation>\n </semantics></math> and IWV at wintertime cloud-free conditions in the Arctic (coefficient of determination of 0.75, slope of <span></span><math>\n <semantics>\n <mrow>\n <mn>19.95</mn>\n <mspace></mspace>\n <mi>W</mi>\n <mspace></mspace>\n <mi>k</mi>\n <msup>\n <mi>g</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $19.95\\,\\mathrm{W}\\ \\mathrm{k}{\\mathrm{g}}^{-\\mathrm{1}}$</annotation>\n </semantics></math>, and ordinate intercept of <span></span><math>\n <semantics>\n <mrow>\n <mn>107.22</mn>\n <mspace></mspace>\n <mi>W</mi>\n <mspace></mspace>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $107.22\\,\\mathrm{W}\\ {\\mathrm{m}}^{-\\mathrm{2}}$</annotation>\n </semantics></math>).</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 7","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042378","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042378","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of the vertical distribution of tropospheric water vapor on the cloud-free downward, broadband thermal-infrared irradiance F TIR $\left({F}_{\text{TIR}}\right)$ was quantified using observations in the Central Arctic, north of 85°N, collected during the Arctic winter. The water vapor profiles were measured with a temporal resolution of 30 s $30\,\mathrm{s}$ using a Raman lidar. The observations revealed maximum values of integrated water vapor (IWV) contents of 3.6 k g m 2 $3.6\,\mathrm{k}\mathrm{g}\ {\mathrm{m}}^{-\mathrm{2}}$ . Seven measurement cases of several-hour durations of slowly changing air masses were examined. Furthermore, 53 rather short-term (10 min) measurement cases were studied. The temporal evolution of the slowly changing air masses revealed a linear relationship between F TIR ${F}_{\text{TIR}}$ and IWV with slopes between 7.17 and 12.95 W k g 1 $12.95\,\mathrm{W}\ \mathrm{k}{\mathrm{g}}^{-\mathrm{1}}$ and a coefficient of determination larger than 0.95 for most of the selected cases. The slopes and the ordinate intercepts showed a dependence on the water vapor-weighted mean temperature (representative temperature of the water vapor distribution). The temperature determined with the Stefan-Boltzmann law from F TIR ${F}_{\text{TIR}}$ correlated with the representative temperature with a coefficient of determination of 0.92. The analysis of 53 independent short-term observations of different air masses confirmed the linear relationship between F TIR ${F}_{\text{TIR}}$ and IWV at wintertime cloud-free conditions in the Arctic (coefficient of determination of 0.75, slope of 19.95 W k g 1 $19.95\,\mathrm{W}\ \mathrm{k}{\mathrm{g}}^{-\mathrm{1}}$ , and ordinate intercept of 107.22 W m 2 $107.22\,\mathrm{W}\ {\mathrm{m}}^{-\mathrm{2}}$ ).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信