Valerio Saitta, Manuela Rebora, Silvana Piersanti, Giorgia Carboni Marri, Paolo Masini, Elena Gorb, Alessia Iacovone, Gianandrea Salerno, Stanislav Gorb
{"title":"Sexual Dimorphism of Tarsal Attachment Devices and Their Relation to Mating in Coccinellidae","authors":"Valerio Saitta, Manuela Rebora, Silvana Piersanti, Giorgia Carboni Marri, Paolo Masini, Elena Gorb, Alessia Iacovone, Gianandrea Salerno, Stanislav Gorb","doi":"10.1002/jmor.70041","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the coevolution of male attachment devices and female elytral morphology in coccinellid beetles, focusing on the sexual dimorphism of claws and adhesive pads. We analyzed 11 species from different tribes with different feeding regime, examining the structure of male and female attachment organs (claws and hairy pads) in relation to the surface structure of female elytra. Our findings show that disco-setae, which enhance adhesion during mating, are present only in males of some species and are localized on the hairy pads of their legs. These setae exhibit morphological adaptations based on the surface structure of female elytra, with larger discoid setal tips in species with smooth elytra and smaller tips in those with hairy elytra. Additionally, male beetles with hairy elytra possess dimorphic claws, which enhance attachment efficiency compared to species with smooth elytra, where claw dimorphism is less pronounced. Our results reveal that sexual dimorphism in hairy pads is more pronounced in larger species, where claw dimorphism is absent, while in smaller species, claw dimorphism alone suffices for effective attachment. These findings contribute to a deeper understanding of the evolutionary dynamics shaping attachment adaptations in Coccinellidae, with implications for reproductive strategies, pest management, and ecological interactions in this diverse beetle family.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"286 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmor.70041","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Morphology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmor.70041","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the coevolution of male attachment devices and female elytral morphology in coccinellid beetles, focusing on the sexual dimorphism of claws and adhesive pads. We analyzed 11 species from different tribes with different feeding regime, examining the structure of male and female attachment organs (claws and hairy pads) in relation to the surface structure of female elytra. Our findings show that disco-setae, which enhance adhesion during mating, are present only in males of some species and are localized on the hairy pads of their legs. These setae exhibit morphological adaptations based on the surface structure of female elytra, with larger discoid setal tips in species with smooth elytra and smaller tips in those with hairy elytra. Additionally, male beetles with hairy elytra possess dimorphic claws, which enhance attachment efficiency compared to species with smooth elytra, where claw dimorphism is less pronounced. Our results reveal that sexual dimorphism in hairy pads is more pronounced in larger species, where claw dimorphism is absent, while in smaller species, claw dimorphism alone suffices for effective attachment. These findings contribute to a deeper understanding of the evolutionary dynamics shaping attachment adaptations in Coccinellidae, with implications for reproductive strategies, pest management, and ecological interactions in this diverse beetle family.
期刊介绍:
The Journal of Morphology welcomes articles of original research in cytology, protozoology, embryology, and general morphology. Articles generally should not exceed 35 printed pages. Preliminary notices or articles of a purely descriptive morphological or taxonomic nature are not included. No paper which has already been published will be accepted, nor will simultaneous publications elsewhere be allowed.
The Journal of Morphology publishes research in functional, comparative, evolutionary and developmental morphology from vertebrates and invertebrates. Human and veterinary anatomy or paleontology are considered when an explicit connection to neontological animal morphology is presented, and the paper contains relevant information for the community of animal morphologists. Based on our long tradition, we continue to seek publishing the best papers in animal morphology.