Performance of Airborne Imaging Spectrometers for Carbon Dioxide Detection and Emission Quantification

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Jinsol Kim, Daniel H. Cusworth, Alana K. Ayasse, Katherine Howell, Kelly O’Neill, Riley M. Duren
{"title":"Performance of Airborne Imaging Spectrometers for Carbon Dioxide Detection and Emission Quantification","authors":"Jinsol Kim,&nbsp;Daniel H. Cusworth,&nbsp;Alana K. Ayasse,&nbsp;Katherine Howell,&nbsp;Kelly O’Neill,&nbsp;Riley M. Duren","doi":"10.1029/2024JD042755","DOIUrl":null,"url":null,"abstract":"<p>Carbon dioxide (CO<sub>2</sub>) emissions from strong point sources account for a significant proportion of the global greenhouse gas emissions, and their associated uncertainties in bottom-up estimates remain substantial. Imaging spectrometers provide a capability to monitor large point source CO<sub>2</sub> emissions and help reduce the uncertainties. In this study, we assess the capability of an airborne monitoring system with temporally sparse observations to constrain annual emissions at both facility and regional scales. We use observations of power plant emissions from 2022 to 2023 and compare the derived emission rates at facility scale to in stack emission observations across the United States. We show that CO<sub>2</sub> concentration enhancements retrieved using a lognormal matched filter are suitable for CO<sub>2</sub> quantification, achieving low bias and uncertainty in estimated emission rates. We find that annual emissions at the regional scale can be effectively constrained by offsetting errors identified at the facility scale, with a 30% uncertainty.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 7","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042755","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042755","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dioxide (CO2) emissions from strong point sources account for a significant proportion of the global greenhouse gas emissions, and their associated uncertainties in bottom-up estimates remain substantial. Imaging spectrometers provide a capability to monitor large point source CO2 emissions and help reduce the uncertainties. In this study, we assess the capability of an airborne monitoring system with temporally sparse observations to constrain annual emissions at both facility and regional scales. We use observations of power plant emissions from 2022 to 2023 and compare the derived emission rates at facility scale to in stack emission observations across the United States. We show that CO2 concentration enhancements retrieved using a lognormal matched filter are suitable for CO2 quantification, achieving low bias and uncertainty in estimated emission rates. We find that annual emissions at the regional scale can be effectively constrained by offsetting errors identified at the facility scale, with a 30% uncertainty.

Abstract Image

航空成像光谱仪用于二氧化碳检测和排放量化的性能研究
来自强点源的二氧化碳排放占全球温室气体排放的很大比例,在自下而上的估计中,与之相关的不确定性仍然很大。成像光谱仪提供了监测大型点源二氧化碳排放的能力,并有助于减少不确定性。在本研究中,我们评估了具有时间稀疏观测的机载监测系统在设施和区域尺度上约束年排放的能力。我们使用2022年至2023年的发电厂排放观测数据,并将美国各地设施规模的衍生排放率与烟囱排放观测数据进行比较。我们表明,使用对数正态匹配滤波器检索的二氧化碳浓度增强适用于二氧化碳量化,在估计排放率方面实现低偏差和不确定性。我们发现,区域尺度上的年排放量可以被设施尺度上确定的抵消误差有效地约束,不确定性为30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信