How South Asian Thunderstorm-Driven Transport Affects the Atmospheric Composition Over the Tibetan Plateau and Stratosphere

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Xiaotong Li, Xueke Wu, Ding Jia, Jiahao Lin, Yuhang Hu, Xiaoteng Huang, Jiali Luo, Guohao Hu
{"title":"How South Asian Thunderstorm-Driven Transport Affects the Atmospheric Composition Over the Tibetan Plateau and Stratosphere","authors":"Xiaotong Li,&nbsp;Xueke Wu,&nbsp;Ding Jia,&nbsp;Jiahao Lin,&nbsp;Yuhang Hu,&nbsp;Xiaoteng Huang,&nbsp;Jiali Luo,&nbsp;Guohao Hu","doi":"10.1029/2024JD043195","DOIUrl":null,"url":null,"abstract":"<p>The Tibetan Plateau (TP) is an important gateway for tropospheric substances enter the stratosphere. South Asia, especially its northwesternmost part, is emerging as a global hotspot for thunderstorms and lightning, driven by dynamic interactions between the orography of the TP and the South Asian Summer Monsoon (SASM). This study used TRMM satellite observations from 1998 to 2013, combined with ERA-5 reanalysis data and the HYSPLIT trajectory model, to comprehensively investigate how thunderstorms in the region impact the atmospheric composition over the TP. The findings reveal that thunderstorms in the region predominantly occur during the SASM. Spatially, these thunderstorms are concentrated along the southern Himalayan front, especially in the westernmost indentation between the TP and the Iranian Plateau, an area also characterized by heavy anthropogenic pollution. By employing the HYSPLIT model to trace transport pathways associated with the thunderstorm, the study demonstrates a clear convergence of pollutants from the South Asia boundary layer into thunderclouds. Furthermore, three principal transport pathways were identified for substances originating from the tops of thunderstorms entering the TP. These pathways are closely linked to the tropospheric westerlies, the anticyclonic circulation of the South Asian High, and processes penetrating the tropopause, accounting for approximately 58%, 33%, and 9% of thunderstorms, respectively. Notably, the impact of these thunderstorm-driven transport processes on the TP and even the lower stratosphere is expected to intensify as thunderstorms become more frequent and pollution levels rise in South Asia due to global warming and local social development.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 7","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD043195","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Tibetan Plateau (TP) is an important gateway for tropospheric substances enter the stratosphere. South Asia, especially its northwesternmost part, is emerging as a global hotspot for thunderstorms and lightning, driven by dynamic interactions between the orography of the TP and the South Asian Summer Monsoon (SASM). This study used TRMM satellite observations from 1998 to 2013, combined with ERA-5 reanalysis data and the HYSPLIT trajectory model, to comprehensively investigate how thunderstorms in the region impact the atmospheric composition over the TP. The findings reveal that thunderstorms in the region predominantly occur during the SASM. Spatially, these thunderstorms are concentrated along the southern Himalayan front, especially in the westernmost indentation between the TP and the Iranian Plateau, an area also characterized by heavy anthropogenic pollution. By employing the HYSPLIT model to trace transport pathways associated with the thunderstorm, the study demonstrates a clear convergence of pollutants from the South Asia boundary layer into thunderclouds. Furthermore, three principal transport pathways were identified for substances originating from the tops of thunderstorms entering the TP. These pathways are closely linked to the tropospheric westerlies, the anticyclonic circulation of the South Asian High, and processes penetrating the tropopause, accounting for approximately 58%, 33%, and 9% of thunderstorms, respectively. Notably, the impact of these thunderstorm-driven transport processes on the TP and even the lower stratosphere is expected to intensify as thunderstorms become more frequent and pollution levels rise in South Asia due to global warming and local social development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信