The Role of Long-Term Hydrodynamic Evolution in the Accumulation and Preservation of Organic Carbon-Rich Shelf Sea Deposits

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
S. L. Ward, S. L. Bradley, Z. A. Roseby, S.-B. Wilmes, D. F. Vosper, C. M. Roberts, J. D. Scourse
{"title":"The Role of Long-Term Hydrodynamic Evolution in the Accumulation and Preservation of Organic Carbon-Rich Shelf Sea Deposits","authors":"S. L. Ward,&nbsp;S. L. Bradley,&nbsp;Z. A. Roseby,&nbsp;S.-B. Wilmes,&nbsp;D. F. Vosper,&nbsp;C. M. Roberts,&nbsp;J. D. Scourse","doi":"10.1029/2024JC022092","DOIUrl":null,"url":null,"abstract":"<p>Understanding and mapping seabed sediment distribution in shelf seas is essential for effective coastal management, offshore developments, and for blue carbon stock assessments and conservation. Fine-grained marine sediments, particularly muds, play a key role in long-term organic carbon sequestration, so knowledge of the spatial extent of these carbon-rich deposits is important. Here, we consider how changes in shelf sea tidal dynamics since the Last Glacial Maximum have influenced the development of three mud depocenters in the northwest European shelf seas: the Fladen Ground, the Celtic Deep, and the Western Irish Sea Mud Belt. Using a new high-resolution paleotidal model, we demonstrate how the evolution of simulated tidal parameters, including bed shear stress and bottom boundary layer thickness, differ across these sites. Geological data support our findings, indicating that long-term mud sedimentation continues to the present in the Celtic Deep and Western Irish Sea Mud Belt, while in the Fladen Ground, accumulation cannot be fully explained by contemporary hydrodynamics. In the latter, mud deposition is relict, deposited during quiescent tidal conditions between 17,000 and 5,000 years ago. We suggest that simulating paleoceanographic conditions can contribute to understanding first-order sediment dynamics over large spatial and temporal scales, a key input for predictive mapping and regional blue carbon inventories. This approach is a valuable first step in data-poor regions to identify potential fine sediment deposits. By illustrating the temporal evolution of organic carbon-rich deposits, we provide a broader context for managing organic carbon storage in shelf sea sedimentary environments.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC022092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC022092","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding and mapping seabed sediment distribution in shelf seas is essential for effective coastal management, offshore developments, and for blue carbon stock assessments and conservation. Fine-grained marine sediments, particularly muds, play a key role in long-term organic carbon sequestration, so knowledge of the spatial extent of these carbon-rich deposits is important. Here, we consider how changes in shelf sea tidal dynamics since the Last Glacial Maximum have influenced the development of three mud depocenters in the northwest European shelf seas: the Fladen Ground, the Celtic Deep, and the Western Irish Sea Mud Belt. Using a new high-resolution paleotidal model, we demonstrate how the evolution of simulated tidal parameters, including bed shear stress and bottom boundary layer thickness, differ across these sites. Geological data support our findings, indicating that long-term mud sedimentation continues to the present in the Celtic Deep and Western Irish Sea Mud Belt, while in the Fladen Ground, accumulation cannot be fully explained by contemporary hydrodynamics. In the latter, mud deposition is relict, deposited during quiescent tidal conditions between 17,000 and 5,000 years ago. We suggest that simulating paleoceanographic conditions can contribute to understanding first-order sediment dynamics over large spatial and temporal scales, a key input for predictive mapping and regional blue carbon inventories. This approach is a valuable first step in data-poor regions to identify potential fine sediment deposits. By illustrating the temporal evolution of organic carbon-rich deposits, we provide a broader context for managing organic carbon storage in shelf sea sedimentary environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信