Unravelling the Glycan Code: Molecular Dynamics and Quantum Chemistry Reveal How O-Glycan Functional Groups Govern OgpA Selectivity in Mucin Degradation by Akkermansia muciniphila

IF 5.7 2区 生物学
Mohammad Khavani, Aliyeh Mehranfar, Mohammad R. K. Mofrad
{"title":"Unravelling the Glycan Code: Molecular Dynamics and Quantum Chemistry Reveal How O-Glycan Functional Groups Govern OgpA Selectivity in Mucin Degradation by Akkermansia muciniphila","authors":"Mohammad Khavani,&nbsp;Aliyeh Mehranfar,&nbsp;Mohammad R. K. Mofrad","doi":"10.1111/1751-7915.70091","DOIUrl":null,"url":null,"abstract":"<p>Mucins, heavily <i>O</i>-glycosylated glycoproteins, are a key component of mucus, and certain gut microbiota, including <i>Akkermansia muciniphila</i>, can utilise mucin glycans as a carbon source. <i>Akkermansia muciniphila</i> produces the <i>O</i>-glycopeptidase enzyme OgpA, which cleaves peptide bonds at the N-terminus of serine (Ser) or threonine (Thr) residues carrying <i>O</i>-glycan substitutions, with selectivity influenced by the <i>O</i>-glycan functional groups. Using molecular dynamics (MD) simulations and quantum chemistry calculations, we explored how different <i>O</i>-glycan groups affect OgpA's selectivity. Our results show that peptides bind to the enzyme via hydrogen bonds, π–π interactions, van der Waals forces and electrostatic interactions, with key residues, including Tyr90, Val138, Gly176, Tyr210 and Glu91, playing important roles. The primary determinant of selectivity is the interaction between the peptide's functional group and the enzyme's binding cavity, while peptide–enzyme interface interactions are secondary. Quantum chemistry calculations reveal that OgpA prefers peptides with a lower electrophilic character. This study provides new insights into mucin degradation by gut microbiota enzymes, advancing our understanding of this critical biological process.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70091","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70091","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mucins, heavily O-glycosylated glycoproteins, are a key component of mucus, and certain gut microbiota, including Akkermansia muciniphila, can utilise mucin glycans as a carbon source. Akkermansia muciniphila produces the O-glycopeptidase enzyme OgpA, which cleaves peptide bonds at the N-terminus of serine (Ser) or threonine (Thr) residues carrying O-glycan substitutions, with selectivity influenced by the O-glycan functional groups. Using molecular dynamics (MD) simulations and quantum chemistry calculations, we explored how different O-glycan groups affect OgpA's selectivity. Our results show that peptides bind to the enzyme via hydrogen bonds, π–π interactions, van der Waals forces and electrostatic interactions, with key residues, including Tyr90, Val138, Gly176, Tyr210 and Glu91, playing important roles. The primary determinant of selectivity is the interaction between the peptide's functional group and the enzyme's binding cavity, while peptide–enzyme interface interactions are secondary. Quantum chemistry calculations reveal that OgpA prefers peptides with a lower electrophilic character. This study provides new insights into mucin degradation by gut microbiota enzymes, advancing our understanding of this critical biological process.

Abstract Image

揭开聚糖密码:分子动力学和量子化学揭示了o -聚糖官能团如何控制嗜粘蛋白降解中OgpA的选择性
黏液蛋白是一种高度o糖基化的糖蛋白,是黏液的关键成分,某些肠道微生物群,包括嗜黏液阿克曼氏菌,可以利用黏液聚糖作为碳源。嗜粘Akkermansia muciniphila产生o -糖肽酶OgpA,该酶在丝氨酸(Ser)或苏氨酸(Thr)残基的n端切割带有o -聚糖取代的肽键,其选择性受o -聚糖官能团的影响。利用分子动力学(MD)模拟和量子化学计算,我们探讨了不同的o -聚糖基团如何影响OgpA的选择性。我们的研究结果表明,肽通过氢键、π -π相互作用、范德华力和静电相互作用与酶结合,其中关键残基包括Tyr90、Val138、Gly176、Tyr210和Glu91发挥了重要作用。选择性的主要决定因素是肽的官能团和酶的结合腔之间的相互作用,而肽-酶界面的相互作用是次要的。量子化学计算表明,OgpA倾向于亲电性较低的肽。本研究为肠道菌群酶降解粘蛋白提供了新的见解,促进了我们对这一关键生物过程的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信