{"title":"Modelling and Predictive Control of Electromechanical Actuators for All-Electric Nose Landing Gear Systems","authors":"Ming-Yen Wei","doi":"10.1049/elp2.70022","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the modelling and predictive control methods for electromechanical actuators (EMAs) used in the retraction and extension system of all-electric nose landing gears. By integrating predictive control theory, the proposed approach aims to enhance control performance and system reliability. A discrete-time EMA model is developed to establish the relationship between predicted current and actuator dynamics. A cost function minimisation algorithm is constructed using switching states, predicted current and measured current values to determine the optimal switching sequence, thereby generating the voltage vectors required for motor operation. To address potential faults such as unbalanced loads, magnetic interference or environmental factors, this study employs a fault diagnosis method based on feedback current, predicted current and adaptive thresholds. Upon detecting actuator failure, a secondary control loop enables emergency gear release. This dual-loop strategy ensures routine and emergency functionality, delivering over 2000 <i>N</i> of thrust at operating speeds ranging from 5 mm/s to 8 mm/s. A prototype EMA system was developed, and experimental results confirm its feasibility, accuracy and robustness, providing a reliable solution for all-electric landing gear applications.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the modelling and predictive control methods for electromechanical actuators (EMAs) used in the retraction and extension system of all-electric nose landing gears. By integrating predictive control theory, the proposed approach aims to enhance control performance and system reliability. A discrete-time EMA model is developed to establish the relationship between predicted current and actuator dynamics. A cost function minimisation algorithm is constructed using switching states, predicted current and measured current values to determine the optimal switching sequence, thereby generating the voltage vectors required for motor operation. To address potential faults such as unbalanced loads, magnetic interference or environmental factors, this study employs a fault diagnosis method based on feedback current, predicted current and adaptive thresholds. Upon detecting actuator failure, a secondary control loop enables emergency gear release. This dual-loop strategy ensures routine and emergency functionality, delivering over 2000 N of thrust at operating speeds ranging from 5 mm/s to 8 mm/s. A prototype EMA system was developed, and experimental results confirm its feasibility, accuracy and robustness, providing a reliable solution for all-electric landing gear applications.
期刊介绍:
IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear.
The scope of the journal includes the following:
The design and analysis of motors and generators of all sizes
Rotating electrical machines
Linear machines
Actuators
Power transformers
Railway traction machines and drives
Variable speed drives
Machines and drives for electrically powered vehicles
Industrial and non-industrial applications and processes
Current Special Issue. Call for papers:
Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf