A simple spray drying-assisted solid-state synthesis of LiFe0.67Mn0.33PO4/C cathode material for lithium-ion batteries

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-02-08 DOI:10.1007/s11581-025-06130-6
Zijun Fang, Junjie Fang, Guorong Hu, Yanbing Cao, Huan Li, Quanjun Fu, Ke Bai, Zhongdong Peng, Ke Du
{"title":"A simple spray drying-assisted solid-state synthesis of LiFe0.67Mn0.33PO4/C cathode material for lithium-ion batteries","authors":"Zijun Fang,&nbsp;Junjie Fang,&nbsp;Guorong Hu,&nbsp;Yanbing Cao,&nbsp;Huan Li,&nbsp;Quanjun Fu,&nbsp;Ke Bai,&nbsp;Zhongdong Peng,&nbsp;Ke Du","doi":"10.1007/s11581-025-06130-6","DOIUrl":null,"url":null,"abstract":"<div><p>A simple and scalable synthesis route for LiFe<sub>0.67</sub>Mn<sub>0.33</sub>PO<sub>4</sub>/C cathode material using spray drying combined with high-temperature solid phase technology was developed. With Li<sub>3</sub>PO<sub>4</sub> as the lithium source and cost-effective Mn<sub>3</sub>O<sub>4</sub> replacing part of the iron, this process is compatible with the industrial production line of LiFePO<sub>4</sub>. X-ray diffraction (XRD) confirmed that the synthesized material exhibited a single-phase olivine structure with a space group of Pnma. Scanning electron microscopy (SEM) revealed a spherical morphology. The synthesized material exhibits excellent rate and cycling performance under the low-grain micro-strain and conductive carbon network structure. Electrochemical testing demonstrated initial discharge capacities of 164, 163, 160, 157, 150, and 128 mAh g<sup>−1</sup> at rates of 0.1, 0.2, 0.5, 1, 2, and 5 C, respectively. Moreover, 96.16% of the capacity is retained after 200 cycles at 1C. This approach offers a viable pathway for the preparation of LiFe<sub>1-x</sub>Mn<sub>x</sub>PO<sub>4</sub>/C positive electrode materials with high energy density and high rate performance.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 4","pages":"3199 - 3208"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06130-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A simple and scalable synthesis route for LiFe0.67Mn0.33PO4/C cathode material using spray drying combined with high-temperature solid phase technology was developed. With Li3PO4 as the lithium source and cost-effective Mn3O4 replacing part of the iron, this process is compatible with the industrial production line of LiFePO4. X-ray diffraction (XRD) confirmed that the synthesized material exhibited a single-phase olivine structure with a space group of Pnma. Scanning electron microscopy (SEM) revealed a spherical morphology. The synthesized material exhibits excellent rate and cycling performance under the low-grain micro-strain and conductive carbon network structure. Electrochemical testing demonstrated initial discharge capacities of 164, 163, 160, 157, 150, and 128 mAh g−1 at rates of 0.1, 0.2, 0.5, 1, 2, and 5 C, respectively. Moreover, 96.16% of the capacity is retained after 200 cycles at 1C. This approach offers a viable pathway for the preparation of LiFe1-xMnxPO4/C positive electrode materials with high energy density and high rate performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信