{"title":"Enhanced photocatalytic degradation and biological activities of green synthesized mesoporous ZnO/MgO nanocomposites","authors":"T. V. Nitha, S. Britto","doi":"10.1007/s13738-025-03198-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we have successfully synthesized the ZnO/MgO nanocomposite with two different concentrations, 1:1 and 1:2 ratios, via. a phytoextract mediated simple, efficient and inherent safe and cost-effective method. Both nanomaterials are characterized through XRD, FT-IR, SEM, EDAX, TEM, BET, XPS and UV–Visible studies. The catalytic efficiency of the prepared nanostructures was examined by the photocatalytic removal of crystal violet (CV) dye. The degradation potentials of ZnO/MgO nanocomposites 1:1 and 1:2 ratio were found to be 99.72 and 97.04%, respectively, within 75 min. of sunlight irradiation at pH 9 using 0.6 g/L catalyst for a 30-ppm dye solution. The excellent performance of 1:1 ratio photocatalysts was due to their good optical and textural properties compared to 1:2 ratio. The degradation reactions of CV dye follow first-order kinetics with rate constants of 0.07 and 0.05 min<sup>−1</sup> for 1:1 and 1:2 ratio, and both the photocatalysts show admirable recycling ability for four cycles of reactions. The 1:1 ratio nanocomposite expresses significantly greater free radical trapping capability than 1:2 ratio, with a maximum inhibition of 82%. Moreover, the anticancer potential of composite structures has been discovered using MTT assays.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"22 4","pages":"915 - 929"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-025-03198-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, we have successfully synthesized the ZnO/MgO nanocomposite with two different concentrations, 1:1 and 1:2 ratios, via. a phytoextract mediated simple, efficient and inherent safe and cost-effective method. Both nanomaterials are characterized through XRD, FT-IR, SEM, EDAX, TEM, BET, XPS and UV–Visible studies. The catalytic efficiency of the prepared nanostructures was examined by the photocatalytic removal of crystal violet (CV) dye. The degradation potentials of ZnO/MgO nanocomposites 1:1 and 1:2 ratio were found to be 99.72 and 97.04%, respectively, within 75 min. of sunlight irradiation at pH 9 using 0.6 g/L catalyst for a 30-ppm dye solution. The excellent performance of 1:1 ratio photocatalysts was due to their good optical and textural properties compared to 1:2 ratio. The degradation reactions of CV dye follow first-order kinetics with rate constants of 0.07 and 0.05 min−1 for 1:1 and 1:2 ratio, and both the photocatalysts show admirable recycling ability for four cycles of reactions. The 1:1 ratio nanocomposite expresses significantly greater free radical trapping capability than 1:2 ratio, with a maximum inhibition of 82%. Moreover, the anticancer potential of composite structures has been discovered using MTT assays.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.