Chengwei Wang, Lei Lei, Zhiheng Chen, Jundong Bai, Meichun He, Xiaolong Peng, Cunyuan Pei, Shibing Ni
{"title":"In situ coupling of Li3VO4 and bifunctional Ni nanoparticles toward enhanced lithium storage","authors":"Chengwei Wang, Lei Lei, Zhiheng Chen, Jundong Bai, Meichun He, Xiaolong Peng, Cunyuan Pei, Shibing Ni","doi":"10.1007/s11581-025-06129-z","DOIUrl":null,"url":null,"abstract":"<div><p>Li<sub>3</sub>VO<sub>4</sub>, characterized by its high theoretical capacity and minimal volume expansion, emerges as a promising anode material for lithium-ion batteries (LIBs). However, challenges such as poor electrical conductivity and morphological control hinder its practical application. In this study, we synthesized a homogeneous Li<sub>3</sub>VO<sub>4</sub> precursor via a hydrothermal method, ensuring uniform complexation of lithium and vanadium sources. During subsequent spray pyrolysis, the Li<sub>3</sub>VO<sub>4</sub> precursor templated the directional adsorption of Ni, facilitating the in situ transformation of the Ni source into nanoparticles and yielding Li<sub>3</sub>VO<sub>4</sub>-0.50Ni porous microspheres. These microspheres possess an exceptionally large specific surface area of 130.0 m<sup>2</sup> g<sup>−1</sup>, enhancing electrolyte contact and reaction kinetics. The incorporation of Ni improves the electrical conductivity of Li<sub>3</sub>VO<sub>4</sub> and, in conjunction with dispersed Ni and carbon, mitigates Li<sub>3</sub>VO<sub>4</sub> particle aggregation. As a result, Li<sub>3</sub>VO<sub>4</sub>-0.50Ni demonstrates a discharge capacity of 433.8 mAh g<sup>−1</sup> after 3000 cycles at a high current density of 4.0 A g<sup>−1</sup>, with a capacity retention of approximately 93.3%. This work underscores the potential of Li<sub>3</sub>VO<sub>4</sub>-0.50Ni as a robust anode material for high-performance LIBs.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 4","pages":"3263 - 3272"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06129-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Li3VO4, characterized by its high theoretical capacity and minimal volume expansion, emerges as a promising anode material for lithium-ion batteries (LIBs). However, challenges such as poor electrical conductivity and morphological control hinder its practical application. In this study, we synthesized a homogeneous Li3VO4 precursor via a hydrothermal method, ensuring uniform complexation of lithium and vanadium sources. During subsequent spray pyrolysis, the Li3VO4 precursor templated the directional adsorption of Ni, facilitating the in situ transformation of the Ni source into nanoparticles and yielding Li3VO4-0.50Ni porous microspheres. These microspheres possess an exceptionally large specific surface area of 130.0 m2 g−1, enhancing electrolyte contact and reaction kinetics. The incorporation of Ni improves the electrical conductivity of Li3VO4 and, in conjunction with dispersed Ni and carbon, mitigates Li3VO4 particle aggregation. As a result, Li3VO4-0.50Ni demonstrates a discharge capacity of 433.8 mAh g−1 after 3000 cycles at a high current density of 4.0 A g−1, with a capacity retention of approximately 93.3%. This work underscores the potential of Li3VO4-0.50Ni as a robust anode material for high-performance LIBs.
Li3VO4具有理论容量高、体积膨胀小的特点,是一种很有前途的锂离子电池负极材料。然而,电导率差和形态控制等挑战阻碍了其实际应用。在这项研究中,我们通过水热法合成了一种均匀的Li3VO4前驱体,保证了锂和钒源的均匀络合。在随后的喷雾热解过程中,Li3VO4前驱体模板化了Ni的定向吸附,促进了Ni源原位转化为纳米颗粒,并生成了Li3VO4-0.50Ni多孔微球。这些微球具有130.0 m2 g−1的特别大的比表面积,增强了电解质接触和反应动力学。Ni的加入提高了Li3VO4的导电性,并且与分散的Ni和碳一起,减轻了Li3VO4颗粒的聚集。结果表明,在4.0 a g−1的高电流密度下,经过3000次循环后,Li3VO4-0.50Ni的放电容量为433.8 mAh g−1,容量保持率约为93.3%。这项工作强调了Li3VO4-0.50Ni作为高性能锂离子电池阳极材料的潜力。
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.