Role of Acid Site Density and Pore Type on the Brønsted Acid Strength of Zeolite H-ZSM-5

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Stefan Adrian F. Nastase, Luigi Cavallo
{"title":"Role of Acid Site Density and Pore Type on the Brønsted Acid Strength of Zeolite H-ZSM-5","authors":"Stefan Adrian F. Nastase,&nbsp;Luigi Cavallo","doi":"10.1007/s10562-025-04991-0","DOIUrl":null,"url":null,"abstract":"<div><p>The Brønsted acid strength of the widely used zeolite H-ZSM-5 was investigated as a function of pore type and distance between acid sites using computational techniques. The straight channel was shown to be the most acidic, with the acid site placement of four Si T-sites apart being the most acidic based on the NH<sub>3</sub> adsorption energy. In addition, the optimal acid site configuration for adsorption was analysed using two sample molecules - ethene and butadiene - that could interact with both acid sites. The distance between acid sites was shown to be significant mostly for butadiene adsorption which was attributed to an interplay between dispersive forces and charge transfer effects. These findings are expected to contribute to a more effective zeolite design and experimental strategies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10562-025-04991-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-04991-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Brønsted acid strength of the widely used zeolite H-ZSM-5 was investigated as a function of pore type and distance between acid sites using computational techniques. The straight channel was shown to be the most acidic, with the acid site placement of four Si T-sites apart being the most acidic based on the NH3 adsorption energy. In addition, the optimal acid site configuration for adsorption was analysed using two sample molecules - ethene and butadiene - that could interact with both acid sites. The distance between acid sites was shown to be significant mostly for butadiene adsorption which was attributed to an interplay between dispersive forces and charge transfer effects. These findings are expected to contribute to a more effective zeolite design and experimental strategies.

Graphical Abstract

酸位密度和孔型对H-ZSM-5沸石Brønsted酸强度的影响
采用计算技术研究了广泛应用的沸石H-ZSM-5的Brønsted酸强度与孔类型和酸位点之间距离的关系。从NH3吸附能来看,直线型通道的酸性最强,4个硅t位之间的酸位位置酸性最强。此外,使用两种可以与两个酸位点相互作用的样品分子-乙烯和丁二烯-分析了吸附的最佳酸位点配置。酸位之间的距离主要是由于分散力和电荷转移效应之间的相互作用而对丁二烯的吸附。这些发现有望为更有效的沸石设计和实验策略做出贡献。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信