{"title":"No-quenching baseline for energy loss signals in oxygen-oxygen collisions","authors":"Jannis Gebhard, Aleksas Mazeliauskas, Adam Takacs","doi":"10.1007/JHEP04(2025)034","DOIUrl":null,"url":null,"abstract":"<p>In this work, we perform computations of inclusive jet, and semi-inclusive jet-hadron cross sections for minimum bias oxygen-oxygen collisions at RHIC and LHC collision energies. We compute the no-quenching baseline for the jet nuclear modification factor <i>R</i><sub>AA</sub> and jet-, and hadron-triggered semi-inclusive nuclear modification factors <i>I</i><sub>AA</sub>. We do this with state-of-the-art nuclear parton distribution functions (nPDFs), next-to-leading-order matrix elements, parton shower, and hadronization. We observe deviations from unity due to cold-nuclear matter effects, even without quenching. We demonstrate that the parton distribution uncertainties constitute a significant obstacle in detecting energy loss in small collision systems. Hadron-triggered observables are particularly sensitive to uncertainties due to correlations between the trigger and analyzed particles. For jet-triggered <i>I</i><sub>AA</sub>, there exists a kinematic window in which nPDF and scale uncertainties cancel dramatically while showing little sensitivity to parton shower and hadronization models, addressing a major limiting factor for energy loss discovery in small systems.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)034.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)034","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we perform computations of inclusive jet, and semi-inclusive jet-hadron cross sections for minimum bias oxygen-oxygen collisions at RHIC and LHC collision energies. We compute the no-quenching baseline for the jet nuclear modification factor RAA and jet-, and hadron-triggered semi-inclusive nuclear modification factors IAA. We do this with state-of-the-art nuclear parton distribution functions (nPDFs), next-to-leading-order matrix elements, parton shower, and hadronization. We observe deviations from unity due to cold-nuclear matter effects, even without quenching. We demonstrate that the parton distribution uncertainties constitute a significant obstacle in detecting energy loss in small collision systems. Hadron-triggered observables are particularly sensitive to uncertainties due to correlations between the trigger and analyzed particles. For jet-triggered IAA, there exists a kinematic window in which nPDF and scale uncertainties cancel dramatically while showing little sensitivity to parton shower and hadronization models, addressing a major limiting factor for energy loss discovery in small systems.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).