Phase Transitions for the XY Model in Non-uniformly Elliptic and Poisson-Voronoi Environments

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Paul Dario, Christophe Garban
{"title":"Phase Transitions for the XY Model in Non-uniformly Elliptic and Poisson-Voronoi Environments","authors":"Paul Dario,&nbsp;Christophe Garban","doi":"10.1007/s00220-025-05269-7","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this paper is to analyze how the celebrated phase transitions of the <i>XY</i> model are affected by the presence of a non-elliptic quenched disorder. In dimension <span>\\(d=2\\)</span>, we prove that if one considers an <i>XY</i> model on the infinite cluster of a supercritical percolation configuration, the Berezinskii–Kosterlitz–Thouless (BKT) phase transition still occurs despite the presence of quenched disorder. The proof works for all <span>\\(p&gt;p_c\\)</span> (site or edge). We also show that the <i>XY</i> model defined on a planar Poisson-Voronoi graph also undergoes a BKT phase transition. When <span>\\(d\\ge 3\\)</span>, we show in a similar fashion that the continuous symmetry breaking of the <i>XY</i> model at low enough temperature is not affected by the presence of quenched disorder such as supercritical percolation (in <span>\\(\\mathbb {Z}^d\\)</span>) or Poisson-Voronoi (in <span>\\(\\mathbb {R}^d\\)</span>). Adapting either Fröhlich–Spencer’s proof of existence of a BKT phase transition (Fröhlich and Spencer in Commun Math Phys 81(4):527–602, 1981) or the more recent proofs (Lammers in Probab Theory Relat Fields 182(1–2):531–550, 2022; van Engelenburg and Lis in Commun Math Phys 399(1):85–104, 2023; Aizenman et al. in Depinning in integer-restricted Gaussian Fields and BKT phases of two-component spin models, 2021. arXiv preprint arXiv:2110.09498; van Engelenburg and Lis in On the duality between height functions and continuous spin models, 2023. arXiv preprint arXiv:2303.08596) to such non-uniformly elliptic disorders appears to be non-trivial. Instead, our proofs rely on Wells’ correlation inequality (Wells in Some Moment Inequalities and a Result on Multivariable Unimodality. PhD thesis, Indiana University, 1977).</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05269-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05269-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to analyze how the celebrated phase transitions of the XY model are affected by the presence of a non-elliptic quenched disorder. In dimension \(d=2\), we prove that if one considers an XY model on the infinite cluster of a supercritical percolation configuration, the Berezinskii–Kosterlitz–Thouless (BKT) phase transition still occurs despite the presence of quenched disorder. The proof works for all \(p>p_c\) (site or edge). We also show that the XY model defined on a planar Poisson-Voronoi graph also undergoes a BKT phase transition. When \(d\ge 3\), we show in a similar fashion that the continuous symmetry breaking of the XY model at low enough temperature is not affected by the presence of quenched disorder such as supercritical percolation (in \(\mathbb {Z}^d\)) or Poisson-Voronoi (in \(\mathbb {R}^d\)). Adapting either Fröhlich–Spencer’s proof of existence of a BKT phase transition (Fröhlich and Spencer in Commun Math Phys 81(4):527–602, 1981) or the more recent proofs (Lammers in Probab Theory Relat Fields 182(1–2):531–550, 2022; van Engelenburg and Lis in Commun Math Phys 399(1):85–104, 2023; Aizenman et al. in Depinning in integer-restricted Gaussian Fields and BKT phases of two-component spin models, 2021. arXiv preprint arXiv:2110.09498; van Engelenburg and Lis in On the duality between height functions and continuous spin models, 2023. arXiv preprint arXiv:2303.08596) to such non-uniformly elliptic disorders appears to be non-trivial. Instead, our proofs rely on Wells’ correlation inequality (Wells in Some Moment Inequalities and a Result on Multivariable Unimodality. PhD thesis, Indiana University, 1977).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信