A Bekenstein-Type Bound in QFT

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Roberto Longo
{"title":"A Bekenstein-Type Bound in QFT","authors":"Roberto Longo","doi":"10.1007/s00220-025-05261-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>B</i> be a spacetime region of width <span>\\(2R &gt;0\\)</span>, and <span>\\(\\varphi \\)</span> a vector state localized in <i>B</i>. We show that the vacuum relative entropy of <span>\\(\\varphi \\)</span>, on the local von Neumann algebra of <i>B</i>, is bounded by <span>\\(2\\pi R\\)</span>-times the energy of the state <span>\\(\\varphi \\)</span> in <i>B</i>. This bound is model-independent and rigorous; it follows solely from first principles in the framework of translation covariant, local Quantum Field Theory on the Minkowski spacetime.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05261-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05261-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Let B be a spacetime region of width \(2R >0\), and \(\varphi \) a vector state localized in B. We show that the vacuum relative entropy of \(\varphi \), on the local von Neumann algebra of B, is bounded by \(2\pi R\)-times the energy of the state \(\varphi \) in B. This bound is model-independent and rigorous; it follows solely from first principles in the framework of translation covariant, local Quantum Field Theory on the Minkowski spacetime.

QFT中的一个bekenstein型界
设B是一个宽度为\(2R >0\)的时空区域,\(\varphi \)是一个定域于B的矢量状态。我们证明了在B的局部von Neumann代数上,\(\varphi \)的真空相对熵的边界是\(2\pi R\) -乘以B中状态\(\varphi \)的能量,这个边界是模型无关的和严格的;它完全遵循平动协变框架下的第一性原理,即闵可夫斯基时空的局部量子场论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信