Unveiling the power of hexagon-shaped KCu7S4 towards hydrogen evolution reactions and supercapacitor electrodes: a bi-functional approach

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-02-13 DOI:10.1007/s11581-025-06136-0
V. Gopal, Sethumathavan Vadivel, P. Sujita, Vaiyapuri Soundharrajan, B. Saravanakumar, P. A. Periasamy
{"title":"Unveiling the power of hexagon-shaped KCu7S4 towards hydrogen evolution reactions and supercapacitor electrodes: a bi-functional approach","authors":"V. Gopal,&nbsp;Sethumathavan Vadivel,&nbsp;P. Sujita,&nbsp;Vaiyapuri Soundharrajan,&nbsp;B. Saravanakumar,&nbsp;P. A. Periasamy","doi":"10.1007/s11581-025-06136-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the electrocatalytic hydrogen production and supercapacitor effectiveness of hexagonal KCu<sub>7</sub>S<sub>4</sub>, a material abundant in nature, which serves as a promising dual-functional material for sustainable applications. Concerning the electrochemical reactions, the KCu<sub>7</sub>S<sub>4</sub> possesses a unique layered hexagonal structure that minimizes internal resistance and facilitates effective ion transport. Comprehensive characterization techniques such as X-ray diffraction (XRD), analysis, Laser Raman spectroscopy, field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) showcase its beneficial structural properties. Techniques such as cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) were utilized to evaluate the true efficacy of the electrocatalytic hydrogen evolution reaction (HER). Galvanostatic charge–discharge (GCD) analysis was used to assess the performances of supercapacitor electrodes. The HER experiments indicate that KCu<sub>7</sub>S<sub>4</sub> serves as an efficient electrocatalyst since it exhibits the lowest HER overpotential of 90 mV at − 10 mA cm<sup>−2</sup> and the Tafel slope of 138 mV dec<sup>−1</sup> (using Ni-foam as substrate). The supercapacitor examinations revealed that the KCu<sub>7</sub>S<sub>4</sub> materials exhibited a greater specific capacitance value of 416 F g<sup>−1</sup> (three-electrode mode with graphite sheet) at 3 A g<sup>−1</sup> and 54 F g<sup>−1</sup> (from the device) at a current density of 1 A g<sup>−1</sup>. The constructed device delivers a power density value of 700 W kg<sup>−1</sup> and an energy density value of 14.78 Wh kg<sup>−1</sup> respectively. These findings illustrated the feasibility of producing and utilizing KCu<sub>7</sub>S<sub>4</sub> on a pilot scale as a bifunctional material for electrocatalyst and supercapacitor uses in practical scenarios.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 4","pages":"3659 - 3669"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06136-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the electrocatalytic hydrogen production and supercapacitor effectiveness of hexagonal KCu7S4, a material abundant in nature, which serves as a promising dual-functional material for sustainable applications. Concerning the electrochemical reactions, the KCu7S4 possesses a unique layered hexagonal structure that minimizes internal resistance and facilitates effective ion transport. Comprehensive characterization techniques such as X-ray diffraction (XRD), analysis, Laser Raman spectroscopy, field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) showcase its beneficial structural properties. Techniques such as cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) were utilized to evaluate the true efficacy of the electrocatalytic hydrogen evolution reaction (HER). Galvanostatic charge–discharge (GCD) analysis was used to assess the performances of supercapacitor electrodes. The HER experiments indicate that KCu7S4 serves as an efficient electrocatalyst since it exhibits the lowest HER overpotential of 90 mV at − 10 mA cm−2 and the Tafel slope of 138 mV dec−1 (using Ni-foam as substrate). The supercapacitor examinations revealed that the KCu7S4 materials exhibited a greater specific capacitance value of 416 F g−1 (three-electrode mode with graphite sheet) at 3 A g−1 and 54 F g−1 (from the device) at a current density of 1 A g−1. The constructed device delivers a power density value of 700 W kg−1 and an energy density value of 14.78 Wh kg−1 respectively. These findings illustrated the feasibility of producing and utilizing KCu7S4 on a pilot scale as a bifunctional material for electrocatalyst and supercapacitor uses in practical scenarios.

揭示六边形KCu7S4对析氢反应和超级电容器电极的作用:一种双功能方法
摘要本研究研究了六方KCu7S4的电催化制氢和超级电容器效能,KCu7S4是一种具有可持续应用前景的双功能材料。在电化学反应方面,KCu7S4具有独特的层状六边形结构,使内阻最小,有利于有效的离子传输。综合表征技术,如x射线衍射(XRD),分析,激光拉曼光谱,场发射扫描电子显微镜(FESEM),透射电子显微镜(TEM)和x射线光电子能谱(XPS)展示了其有益的结构特性。利用循环伏安法(CV)、线性扫描伏安法(LSV)、电化学阻抗谱(EIS)和计时电流法(CA)等技术来评估电催化析氢反应(HER)的真实功效。采用恒流充放电(GCD)分析方法评价了超级电容器电极的性能。实验结果表明,KCu7S4在−10 mA cm−2下具有最低的HER过电位90 mV, Tafel斜率为138 mV dec−1(以泡沫镍为衬底),是一种高效的电催化剂。超级电容测试表明,KCu7S4材料在3a g−1电流密度下的比电容值为416 F g−1(石墨片三电极模式),在1a g−1电流密度下的比电容值为54 F g−1(来自器件)。该器件的功率密度为700w kg−1,能量密度为14.78 Wh kg−1。这些发现说明了在中试规模上生产和利用KCu7S4作为电催化剂和超级电容器双功能材料在实际应用中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信