{"title":"Optimization of dispersion angle in resonant cavity micro-light-emitting diode using multilayer DBR and microlens structures","authors":"Tzu-Yi Lee, Chien-Chi Huang, Fu-He Hsiao, Chin-Wei Sher, Gong-Ru Lin, Li-Yin Chen, Fang-Chung Chen, Chia-Feng Lin, Jr-Hau He, Kuo-Bin Hong, Yu-Heng Hong, Hao-Chung Kuo","doi":"10.1186/s11671-025-04219-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the fabrication and the corresponding performance characteristics of resonant cavity micro-light-emitting diodes (RC-μ-LEDs) are examined, with particular emphasis placed on reducing the light emission angle to enhance their application efficiency. A stepped quantum well structure and a multilayer aperture distributed Bragg reflector (DBR) are used to reduce the light emission angle, and two different approaches are investigated: one is by adding a multilayer DBR structure, and the other is by incorporating a microlens (ML) structure. The experimental results show that both adjusting the DBR cycles and adding microlenses can effectively reduce the dispersion angle of light emission, and thus improving the directionality of light, wavelength stability, and the overall device performance. Such highly directional light sources offer great solutions for optical communications, micro-LEDs, and augmented reality (AR) applications.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04219-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04219-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the fabrication and the corresponding performance characteristics of resonant cavity micro-light-emitting diodes (RC-μ-LEDs) are examined, with particular emphasis placed on reducing the light emission angle to enhance their application efficiency. A stepped quantum well structure and a multilayer aperture distributed Bragg reflector (DBR) are used to reduce the light emission angle, and two different approaches are investigated: one is by adding a multilayer DBR structure, and the other is by incorporating a microlens (ML) structure. The experimental results show that both adjusting the DBR cycles and adding microlenses can effectively reduce the dispersion angle of light emission, and thus improving the directionality of light, wavelength stability, and the overall device performance. Such highly directional light sources offer great solutions for optical communications, micro-LEDs, and augmented reality (AR) applications.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.