Conceptual Design of a Conduction-Cooled Superconducting Quadrupole for ILC Main Linac With Large Temperature Margin

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ó. Durán;L. García-Tabarés;L. A. González;F. Toral;Y. Arimoto;T. Yamada;A. Yamamoto
{"title":"Conceptual Design of a Conduction-Cooled Superconducting Quadrupole for ILC Main Linac With Large Temperature Margin","authors":"Ó. Durán;L. García-Tabarés;L. A. González;F. Toral;Y. Arimoto;T. Yamada;A. Yamamoto","doi":"10.1109/TASC.2025.3549412","DOIUrl":null,"url":null,"abstract":"The International Linear Collider (ILC) Main Linac consists of a series of cryomodules, one third of which are composed by eight 9-cell superconducting RF (SRF) cavities and a superconducting quadrupole (SCQ) package. The electrons and positrons are focused by the quadrupole and steered by the two dipoles included in the SCQ magnet. Large expected dark currents are originated at the SRF cavities and deposit energy at the SCQ. The superconductor in the coils should not surpass its critical temperature before that heat deposition is evacuated.This paper depicts the SCQ electromagnetic design proposed by CIEMAT. Several superconductors were analysed and compared. Nb<sub>3</sub>Sn wire was selected for the quadrupole coils relying on the large temperature margin for the absorption in the superconducting coils of the heat deposition from the dark currents. The magnet cross-section has been carefully optimized for the HE type of the SCQ magnet to achieve a good field quality and superconductor efficiency in spite of the expected iron saturation. The dipole coils were protected from the heat deposition, enabling the election of Nb-Ti wire. The longitudinal space has been defined with an electromagnetic 3D model.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10918647/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The International Linear Collider (ILC) Main Linac consists of a series of cryomodules, one third of which are composed by eight 9-cell superconducting RF (SRF) cavities and a superconducting quadrupole (SCQ) package. The electrons and positrons are focused by the quadrupole and steered by the two dipoles included in the SCQ magnet. Large expected dark currents are originated at the SRF cavities and deposit energy at the SCQ. The superconductor in the coils should not surpass its critical temperature before that heat deposition is evacuated.This paper depicts the SCQ electromagnetic design proposed by CIEMAT. Several superconductors were analysed and compared. Nb3Sn wire was selected for the quadrupole coils relying on the large temperature margin for the absorption in the superconducting coils of the heat deposition from the dark currents. The magnet cross-section has been carefully optimized for the HE type of the SCQ magnet to achieve a good field quality and superconductor efficiency in spite of the expected iron saturation. The dipole coils were protected from the heat deposition, enabling the election of Nb-Ti wire. The longitudinal space has been defined with an electromagnetic 3D model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信