{"title":"Semantic Disentangling for Audiovisual Induced Emotion","authors":"Qunxi Dong;Wang Zheng;Fuze Tian;Lixian Zhu;Kun Qian;Jingyu Liu;Xuan Zhang","doi":"10.1109/TCSS.2024.3450717","DOIUrl":null,"url":null,"abstract":"Emotions regulation play an important role in human behavior, but exhibit considerable heterogeneity among individuals, which attenuates the generalization ability of emotion models. In this work, we aim to achieve robust emotion prediction through efficient disentanglement of affective semantic representations. In detail, the data generation mechanism behind observations from different perspectives is causally set, where latent variables that relate to emotion are explicitly separate into three parts: the intrinsic-related part, the extrinsic-related part, and the spurious-related part. Affective semantic features consist of the first two parts, with the understanding that spurious latent variables generate the inherent biases in the data. Furthermore, a variational autoencoder with a reformulated objective function is proposed to learn such disentangled latent variables, and only adopts semantic representations to perform the final classification task, avoiding the interference of spurious variables. In addition, for electroencephalography (EEG) data used in this article, a space-frequency mapping method is introduced to improve information utilization. Comprehensive experiments on popular emotion datasets show that the proposed method can achieve competitive intersubject generalization performance. Our results highlight the potential of efficient latent representation disentanglement in addressing the complexity challenges of emotion recognition.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 2","pages":"928-936"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10680465/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Emotions regulation play an important role in human behavior, but exhibit considerable heterogeneity among individuals, which attenuates the generalization ability of emotion models. In this work, we aim to achieve robust emotion prediction through efficient disentanglement of affective semantic representations. In detail, the data generation mechanism behind observations from different perspectives is causally set, where latent variables that relate to emotion are explicitly separate into three parts: the intrinsic-related part, the extrinsic-related part, and the spurious-related part. Affective semantic features consist of the first two parts, with the understanding that spurious latent variables generate the inherent biases in the data. Furthermore, a variational autoencoder with a reformulated objective function is proposed to learn such disentangled latent variables, and only adopts semantic representations to perform the final classification task, avoiding the interference of spurious variables. In addition, for electroencephalography (EEG) data used in this article, a space-frequency mapping method is introduced to improve information utilization. Comprehensive experiments on popular emotion datasets show that the proposed method can achieve competitive intersubject generalization performance. Our results highlight the potential of efficient latent representation disentanglement in addressing the complexity challenges of emotion recognition.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.