A Hybrid Model for BGP Anomaly Detection Using Median Absolute Deviation and Machine Learning

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Maria Andrea Romo-Chavero;Gustavo De Los Ríos Alatorre;Jose Antonio Cantoral-Ceballos;Jesús Arturo Pérez-Díaz;Carlos Martinez-Cagnazzo
{"title":"A Hybrid Model for BGP Anomaly Detection Using Median Absolute Deviation and Machine Learning","authors":"Maria Andrea Romo-Chavero;Gustavo De Los Ríos Alatorre;Jose Antonio Cantoral-Ceballos;Jesús Arturo Pérez-Díaz;Carlos Martinez-Cagnazzo","doi":"10.1109/OJCOMS.2025.3550010","DOIUrl":null,"url":null,"abstract":"Detecting anomalies in the Border Gateway Protocol (BGP) has proved relevant in the cybersecurity field due to the protocol’s critical role in the Internet’s infrastructure. BGP vulnerabilities can lead to major disruptions and connectivity failures, highlighting the need for early detection to maintain stable and secure Internet services. To address this challenge, our article presents an enhanced version of our previously published Median Absolute Deviation (MAD) anomaly detection system. We introduce a novel dynamic threshold mechanism that significantly enhances anomaly detection performance in BGP, achieving superior accuracy and F1-score. Through a comparative analysis of machine learning (ML) classification models—including Random Forest, Extra Trees, XGBoost, LightGBM, and CatBoost—we demonstrate that integrating our MAD detection system with these ML models can improve anomaly detection significantly. Additionally, we explore how MAD performs when combined with neural networks such as RNN, GRU, and LSTM, providing a valuable comparison between machine learning and neural network-based approaches. We evaluate the models performance in well-known events, such as CodeRed 1 v2, Slammer, Nimda, the Moscow blackout, and the Telekom Malaysia (TMnet) misconfiguration. Our results show an overall accuracy of 0.99 and F1-score of 0.98, demonstrating the effective integration of MAD and ML models for the identification of security threats. Our approach enables proactive detection with minimal computational costs and reduced preprocessing, proving that efficient anomaly detection is achievable.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"2102-2116"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10930348","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10930348/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting anomalies in the Border Gateway Protocol (BGP) has proved relevant in the cybersecurity field due to the protocol’s critical role in the Internet’s infrastructure. BGP vulnerabilities can lead to major disruptions and connectivity failures, highlighting the need for early detection to maintain stable and secure Internet services. To address this challenge, our article presents an enhanced version of our previously published Median Absolute Deviation (MAD) anomaly detection system. We introduce a novel dynamic threshold mechanism that significantly enhances anomaly detection performance in BGP, achieving superior accuracy and F1-score. Through a comparative analysis of machine learning (ML) classification models—including Random Forest, Extra Trees, XGBoost, LightGBM, and CatBoost—we demonstrate that integrating our MAD detection system with these ML models can improve anomaly detection significantly. Additionally, we explore how MAD performs when combined with neural networks such as RNN, GRU, and LSTM, providing a valuable comparison between machine learning and neural network-based approaches. We evaluate the models performance in well-known events, such as CodeRed 1 v2, Slammer, Nimda, the Moscow blackout, and the Telekom Malaysia (TMnet) misconfiguration. Our results show an overall accuracy of 0.99 and F1-score of 0.98, demonstrating the effective integration of MAD and ML models for the identification of security threats. Our approach enables proactive detection with minimal computational costs and reduced preprocessing, proving that efficient anomaly detection is achievable.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信