Constructing anisotropic and strong polysaccharide-based hydrogels with stretching-dehydration strategy: Effect of sodium alginate, pectin, gellan gum, and curdlan
Jun He, Jingwen Zhao, Wenzhe Jia, Yi Cui, Siyu Wei, Yiguo Zhao, Yapeng Fang
{"title":"Constructing anisotropic and strong polysaccharide-based hydrogels with stretching-dehydration strategy: Effect of sodium alginate, pectin, gellan gum, and curdlan","authors":"Jun He, Jingwen Zhao, Wenzhe Jia, Yi Cui, Siyu Wei, Yiguo Zhao, Yapeng Fang","doi":"10.1016/j.carbpol.2025.123567","DOIUrl":null,"url":null,"abstract":"<div><div>Polysaccharide-based hydrogels are widely utilized in the food industry and materials science due to their safety and abundance from natural sources. However, their functionality is often limited by poor mechanical properties, primarily due to their simple and isotropic structures. In this study, the stretching-dehydration (SD) processing was applied to create anisotropic structure and enhance the mechanical properties in polysaccharide-based hydrogels, specifically sodium alginate (SA), pectin (PE), gellan gum (GG), and curdlan (CU). Among these, low molecular weight sodium alginate (SA-L) hydrogel exhibited notable stretching-induced anisotropy and structural stability during dehydration. Furthermore, increasing the controlled strains (CSN) could improve anisotropy, stretching strength, and Young's modulus which reached up to 100 MPa in anisotropic SA-L hydrogel. The anisotropic hydrogels closely mimicked the microstructure of whole-muscle foods. Sensory evaluations highlighted the enhanced chewiness and hardness, suggesting the anisotropic hydrogels are promising candidates for emulating whole-muscle textures. This work highlights the potential of anisotropic hydrogels produced through simple SD treatment as advanced materials for both food and biomimetic applications.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"359 ","pages":"Article 123567"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725003480","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Polysaccharide-based hydrogels are widely utilized in the food industry and materials science due to their safety and abundance from natural sources. However, their functionality is often limited by poor mechanical properties, primarily due to their simple and isotropic structures. In this study, the stretching-dehydration (SD) processing was applied to create anisotropic structure and enhance the mechanical properties in polysaccharide-based hydrogels, specifically sodium alginate (SA), pectin (PE), gellan gum (GG), and curdlan (CU). Among these, low molecular weight sodium alginate (SA-L) hydrogel exhibited notable stretching-induced anisotropy and structural stability during dehydration. Furthermore, increasing the controlled strains (CSN) could improve anisotropy, stretching strength, and Young's modulus which reached up to 100 MPa in anisotropic SA-L hydrogel. The anisotropic hydrogels closely mimicked the microstructure of whole-muscle foods. Sensory evaluations highlighted the enhanced chewiness and hardness, suggesting the anisotropic hydrogels are promising candidates for emulating whole-muscle textures. This work highlights the potential of anisotropic hydrogels produced through simple SD treatment as advanced materials for both food and biomimetic applications.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.