Shijie Yang , Chao Chen , Jie Liu , Jie Tang , Gangshan Wu
{"title":"FSDM: An efficient video super-resolution method based on Frames-Shift Diffusion Model","authors":"Shijie Yang , Chao Chen , Jie Liu , Jie Tang , Gangshan Wu","doi":"10.1016/j.neunet.2025.107435","DOIUrl":null,"url":null,"abstract":"<div><div>Video super-resolution is a fundamental task aimed at enhancing video quality through intricate modeling techniques. Recent advancements in diffusion models have significantly enhanced image super-resolution processing capabilities. However, their integration into video super-resolution workflows remains constrained due to the computational complexity of temporal fusion modules, demanding more computational resources compared to their image counterparts. To address this challenge, we propose a novel approach: a Frames-Shift Diffusion Model based on the image diffusion models. Compared to directly training diffusion-based video super-resolution models, redesigning the diffusion process of image models without introducing complex temporal modules requires minimal training consumption. We incorporate temporal information into the image super-resolution diffusion model by using optical flow and perform multi-frame fusion. This model adapts the diffusion process to smoothly transition from image super-resolution to video super-resolution diffusion without additional weight parameters. As a result, the Frames-Shift Diffusion Model efficiently processes videos frame by frame while maintaining computational efficiency and achieving superior performance. It enhances perceptual quality and achieves comparable performance to other state-of-the-art diffusion-based VSR methods in PSNR and SSIM. This approach optimizes video super-resolution by simplifying the integration of temporal data, thus addressing key challenges in the field.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107435"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003144","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Video super-resolution is a fundamental task aimed at enhancing video quality through intricate modeling techniques. Recent advancements in diffusion models have significantly enhanced image super-resolution processing capabilities. However, their integration into video super-resolution workflows remains constrained due to the computational complexity of temporal fusion modules, demanding more computational resources compared to their image counterparts. To address this challenge, we propose a novel approach: a Frames-Shift Diffusion Model based on the image diffusion models. Compared to directly training diffusion-based video super-resolution models, redesigning the diffusion process of image models without introducing complex temporal modules requires minimal training consumption. We incorporate temporal information into the image super-resolution diffusion model by using optical flow and perform multi-frame fusion. This model adapts the diffusion process to smoothly transition from image super-resolution to video super-resolution diffusion without additional weight parameters. As a result, the Frames-Shift Diffusion Model efficiently processes videos frame by frame while maintaining computational efficiency and achieving superior performance. It enhances perceptual quality and achieves comparable performance to other state-of-the-art diffusion-based VSR methods in PSNR and SSIM. This approach optimizes video super-resolution by simplifying the integration of temporal data, thus addressing key challenges in the field.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.