FSDM: An efficient video super-resolution method based on Frames-Shift Diffusion Model

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shijie Yang , Chao Chen , Jie Liu , Jie Tang , Gangshan Wu
{"title":"FSDM: An efficient video super-resolution method based on Frames-Shift Diffusion Model","authors":"Shijie Yang ,&nbsp;Chao Chen ,&nbsp;Jie Liu ,&nbsp;Jie Tang ,&nbsp;Gangshan Wu","doi":"10.1016/j.neunet.2025.107435","DOIUrl":null,"url":null,"abstract":"<div><div>Video super-resolution is a fundamental task aimed at enhancing video quality through intricate modeling techniques. Recent advancements in diffusion models have significantly enhanced image super-resolution processing capabilities. However, their integration into video super-resolution workflows remains constrained due to the computational complexity of temporal fusion modules, demanding more computational resources compared to their image counterparts. To address this challenge, we propose a novel approach: a Frames-Shift Diffusion Model based on the image diffusion models. Compared to directly training diffusion-based video super-resolution models, redesigning the diffusion process of image models without introducing complex temporal modules requires minimal training consumption. We incorporate temporal information into the image super-resolution diffusion model by using optical flow and perform multi-frame fusion. This model adapts the diffusion process to smoothly transition from image super-resolution to video super-resolution diffusion without additional weight parameters. As a result, the Frames-Shift Diffusion Model efficiently processes videos frame by frame while maintaining computational efficiency and achieving superior performance. It enhances perceptual quality and achieves comparable performance to other state-of-the-art diffusion-based VSR methods in PSNR and SSIM. This approach optimizes video super-resolution by simplifying the integration of temporal data, thus addressing key challenges in the field.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107435"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003144","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Video super-resolution is a fundamental task aimed at enhancing video quality through intricate modeling techniques. Recent advancements in diffusion models have significantly enhanced image super-resolution processing capabilities. However, their integration into video super-resolution workflows remains constrained due to the computational complexity of temporal fusion modules, demanding more computational resources compared to their image counterparts. To address this challenge, we propose a novel approach: a Frames-Shift Diffusion Model based on the image diffusion models. Compared to directly training diffusion-based video super-resolution models, redesigning the diffusion process of image models without introducing complex temporal modules requires minimal training consumption. We incorporate temporal information into the image super-resolution diffusion model by using optical flow and perform multi-frame fusion. This model adapts the diffusion process to smoothly transition from image super-resolution to video super-resolution diffusion without additional weight parameters. As a result, the Frames-Shift Diffusion Model efficiently processes videos frame by frame while maintaining computational efficiency and achieving superior performance. It enhances perceptual quality and achieves comparable performance to other state-of-the-art diffusion-based VSR methods in PSNR and SSIM. This approach optimizes video super-resolution by simplifying the integration of temporal data, thus addressing key challenges in the field.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信