Microwave tunable metasurface with independent wide phase and large amplitude modulation for multifunctional beam control and RCS Reduction

IF 2.2 3区 物理与天体物理 Q2 OPTICS
Tian Yuan , Minhua Li , Tianyao Ling , Chao Shi , Hanru Shao , Jianfeng Dong , Libo Qian
{"title":"Microwave tunable metasurface with independent wide phase and large amplitude modulation for multifunctional beam control and RCS Reduction","authors":"Tian Yuan ,&nbsp;Minhua Li ,&nbsp;Tianyao Ling ,&nbsp;Chao Shi ,&nbsp;Hanru Shao ,&nbsp;Jianfeng Dong ,&nbsp;Libo Qian","doi":"10.1016/j.optcom.2025.131817","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a microwave tunable metasurface with independent control of amplitude and phase is proposed. It consists of a varactor diode loaded phase modulation layer, an air spacer, and a PIN diode loaded amplitude modulation layer, all of which are successively cascaded along electromagnetic (EM) propagation. By controlling the equivalent lumped parameters of varactor diodes and PIN diodes independently through bias voltages, modulation of the reflected wave is achieved with 180-degree dynamic phase range and 0.2–0.9 dynamic amplitude range from 4.59 to 4.97 GHz, both of which don't interfere with each other. Additionally, reflected waves under oblique incident angles is conducted to validate the robustness of the design. Designs with diversified lumped parameters and field distributions are further studied in detail. Based on the principle of encoded metasurfaces, three-beamforming, four-beamforming, and radar cross section (RCS) reduction structures are implemented. A 4 × 2 metasurface sample is fabricated and tested in rectangular waveguide, demonstrating the feasibility of this design strategy. This advancement provides new insights for the further development of multifunctional wireless communication systems and radar technologies.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"584 ","pages":"Article 131817"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825003451","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a microwave tunable metasurface with independent control of amplitude and phase is proposed. It consists of a varactor diode loaded phase modulation layer, an air spacer, and a PIN diode loaded amplitude modulation layer, all of which are successively cascaded along electromagnetic (EM) propagation. By controlling the equivalent lumped parameters of varactor diodes and PIN diodes independently through bias voltages, modulation of the reflected wave is achieved with 180-degree dynamic phase range and 0.2–0.9 dynamic amplitude range from 4.59 to 4.97 GHz, both of which don't interfere with each other. Additionally, reflected waves under oblique incident angles is conducted to validate the robustness of the design. Designs with diversified lumped parameters and field distributions are further studied in detail. Based on the principle of encoded metasurfaces, three-beamforming, four-beamforming, and radar cross section (RCS) reduction structures are implemented. A 4 × 2 metasurface sample is fabricated and tested in rectangular waveguide, demonstrating the feasibility of this design strategy. This advancement provides new insights for the further development of multifunctional wireless communication systems and radar technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信