An ultra-broadband polarization conversion metasurface for enhanced stealth and RCS mitigation in MIMO configurations

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Madhusudhan Goud Rangula , Princy Paul , Basudev Majumder , Krishnamoorthy Kandasamy
{"title":"An ultra-broadband polarization conversion metasurface for enhanced stealth and RCS mitigation in MIMO configurations","authors":"Madhusudhan Goud Rangula ,&nbsp;Princy Paul ,&nbsp;Basudev Majumder ,&nbsp;Krishnamoorthy Kandasamy","doi":"10.1016/j.aeue.2025.155793","DOIUrl":null,"url":null,"abstract":"<div><div>A single-layer broadband metasurface for efficient cross-polarization conversion, aiming at improving the stealth performance of a MIMO antenna, is proposed in this work. A low-profile, minimally complex <em>meta</em>-atom and its mirror image are proposed, featuring a diagonal metallic strip and two narrow horizontal edge strips. This configuration achieves more than 90 % polarization conversion efficiency while maintaining an absolute 180-degree phase gradient between the reflected waves of the two <em>meta</em>-atoms. A chessboard metasurface with 10x10 elements, constructed with the proposed <em>meta</em>-atom and mirror image, is integrated with the slot antenna-based MIMO configuration. A slot antenna is orthogonally arranged to form a four-element MIMO configuration, ensuring high isolation exceeding 25 dB between the individual elements. The realized peak gain of this arrangement is 6.95 dBi radiating orthogonally. Monostatic, bistatic, and 3D scattering patterns of a MIMO configuration with and without metasurface are evaluated. Under oblique incidence, the metasurface demonstrates exceptional angular stability, maintaining a minimum RCS reduction of 10 dB for incidence angles up to 60°. The fabricated and optimized prototype exhibits measurement outcomes that closely correspond to the simulation results for normal and oblique incidence scenarios.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"196 ","pages":"Article 155793"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841125001347","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A single-layer broadband metasurface for efficient cross-polarization conversion, aiming at improving the stealth performance of a MIMO antenna, is proposed in this work. A low-profile, minimally complex meta-atom and its mirror image are proposed, featuring a diagonal metallic strip and two narrow horizontal edge strips. This configuration achieves more than 90 % polarization conversion efficiency while maintaining an absolute 180-degree phase gradient between the reflected waves of the two meta-atoms. A chessboard metasurface with 10x10 elements, constructed with the proposed meta-atom and mirror image, is integrated with the slot antenna-based MIMO configuration. A slot antenna is orthogonally arranged to form a four-element MIMO configuration, ensuring high isolation exceeding 25 dB between the individual elements. The realized peak gain of this arrangement is 6.95 dBi radiating orthogonally. Monostatic, bistatic, and 3D scattering patterns of a MIMO configuration with and without metasurface are evaluated. Under oblique incidence, the metasurface demonstrates exceptional angular stability, maintaining a minimum RCS reduction of 10 dB for incidence angles up to 60°. The fabricated and optimized prototype exhibits measurement outcomes that closely correspond to the simulation results for normal and oblique incidence scenarios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
18.80%
发文量
292
审稿时长
4.9 months
期刊介绍: AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including: signal and system theory, digital signal processing network theory and circuit design information theory, communication theory and techniques, modulation, source and channel coding switching theory and techniques, communication protocols optical communications microwave theory and techniques, radar, sonar antennas, wave propagation AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信