Preparation, characterization and antibacterial activities of bio-based schiff base Copper Complex intercalated montmorillonite

IF 5.3 2区 地球科学 Q2 CHEMISTRY, PHYSICAL
Xianchang Liang , Wenjing Wang , Mingyuan Tang , Yuanyuan Kang , Mingjun Cui , Haichao Zhao
{"title":"Preparation, characterization and antibacterial activities of bio-based schiff base Copper Complex intercalated montmorillonite","authors":"Xianchang Liang ,&nbsp;Wenjing Wang ,&nbsp;Mingyuan Tang ,&nbsp;Yuanyuan Kang ,&nbsp;Mingjun Cui ,&nbsp;Haichao Zhao","doi":"10.1016/j.clay.2025.107809","DOIUrl":null,"url":null,"abstract":"<div><div>The direct use of antimicrobial agents has problems such as high effective dose and short antimicrobial duration. Therefore, encapsulation of antimicrobial agents in nanocontainers can improve stability and antimicrobial efficiency, reduce the risk of drug resistance, and lower the environmental impact. In this study, biomass-based Schiff base ligand (LAE-oVan) was synthesized by condensation of ethyl lauroyl arginate HCl and ortho-vanillin. Bio-based Schiff base copper complex intercalated montmorillonite was then prepared by pretreated montmorillonite (MMT) with Cu<sup>2+</sup> exchange, followed by chelation with LAE-oVan to form antimicrobial nanocomposites (LAE-oVan-Cu@MMT). Release behavior studies have shown that LAE-oVan-Cu@MMT has a release time of up to 2250 min, and the releasable amount of Cu<sup>2+</sup> and LAE-oVan was calculated to be about 35 %. Antibacterial activity was studied by zone of inhibition method, minimum inhibitory concentration method, plate colony counting method and biofilm method. The results showed that LAE-oVan-Cu@MMT achieved 99.99 % antibacterial ratio against <em>Escherichia coli (E. coli)</em> at 25 μg/mL within 1.5 h and <em>Staphylococcus aureus (S. aureus)</em> at 25 μg/mL within 3 h. Biofilms gradually decreased with increasing concentrations of LAE-oVan-Cu@MMT. Moreover, cytotoxicity studies showed that LAE-oVan-Cu@MMT had a low toxicity to L929 cells. This study provides a strategy for the development of novel antimicrobial with low toxic, eco-friendly and long term release efficiency.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"271 ","pages":"Article 107809"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725001140","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The direct use of antimicrobial agents has problems such as high effective dose and short antimicrobial duration. Therefore, encapsulation of antimicrobial agents in nanocontainers can improve stability and antimicrobial efficiency, reduce the risk of drug resistance, and lower the environmental impact. In this study, biomass-based Schiff base ligand (LAE-oVan) was synthesized by condensation of ethyl lauroyl arginate HCl and ortho-vanillin. Bio-based Schiff base copper complex intercalated montmorillonite was then prepared by pretreated montmorillonite (MMT) with Cu2+ exchange, followed by chelation with LAE-oVan to form antimicrobial nanocomposites (LAE-oVan-Cu@MMT). Release behavior studies have shown that LAE-oVan-Cu@MMT has a release time of up to 2250 min, and the releasable amount of Cu2+ and LAE-oVan was calculated to be about 35 %. Antibacterial activity was studied by zone of inhibition method, minimum inhibitory concentration method, plate colony counting method and biofilm method. The results showed that LAE-oVan-Cu@MMT achieved 99.99 % antibacterial ratio against Escherichia coli (E. coli) at 25 μg/mL within 1.5 h and Staphylococcus aureus (S. aureus) at 25 μg/mL within 3 h. Biofilms gradually decreased with increasing concentrations of LAE-oVan-Cu@MMT. Moreover, cytotoxicity studies showed that LAE-oVan-Cu@MMT had a low toxicity to L929 cells. This study provides a strategy for the development of novel antimicrobial with low toxic, eco-friendly and long term release efficiency.
生物基席夫碱铜配合物插层蒙脱土的制备、表征及抗菌活性研究
直接使用抗菌药物存在有效剂量大、抗菌持续时间短等问题。因此,将抗菌药物包封在纳米容器中可以提高稳定性和抗菌效率,降低耐药风险,降低对环境的影响。本研究以月桂酰精氨酸乙酯和邻香兰素为原料,合成了生物质基希夫碱配体(LAE-oVan)。然后通过预处理蒙脱土(MMT)与Cu2+交换制备生物基席夫碱铜配合物插层蒙脱土,然后与LAE-oVan螯合形成抗菌纳米复合材料(LAE-oVan-Cu@MMT)。释放行为研究表明LAE-oVan-Cu@MMT的释放时间可达2250 min,计算出Cu2+和LAE-oVan的释放量约为35%。采用抑菌带法、最小抑菌浓度法、平板菌落计数法和生物膜法研究其抑菌活性。结果表明,LAE-oVan-Cu@MMT在25 μg/mL浓度下,1.5 h对大肠杆菌(E. coli)的抑菌率达到99.99%,在25 μg/mL浓度下,3 h对金黄色葡萄球菌(S. aureus)的抑菌率达到99.99%,随着LAE-oVan-Cu@MMT浓度的增加,生物膜逐渐减少。此外,细胞毒性研究表明LAE-oVan-Cu@MMT对L929细胞具有低毒性。本研究为开发低毒、环保、长效的新型抗菌药物提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信